手机版

2009年山东省滨州市中考数学试题及答案

发布时间:2024-11-28   来源:未知    
字号:

滨州市二○○九年初级中学学业水平考试

数 学 试 题

温馨提示:

1. 本试题共8页,满分120分,考试时间为120分钟.

b4ac b2

2. 抛物线y ax bx c(a 0)的顶点坐标是 .

4a 2a

2

1.截止目前,滨州市总人口数约373万,此人口数用科学记数法可表示为( ) A.3.73 10

4

B.3.73 10

5

C.3.73 10

6

D.3.73 10

7

2.对于式子 ( 8),下列理解:(1)可表示 8的相反数;(2)可表示 1与 8的乘积;(3)可表示 8的绝对值;(4)运算结果等于8.其中理解错误的个数是( ) A.0 B.1 C.2 D.3

3.从编号为1到10的10张卡片中任取1张,所得编号是3的倍数的概率为( ) A.

1 10

B.

2 10

C.

3 10

D.

1 5

4.从上面看如右图所示的几何体,得到的图形是( )

A. B. C. D. (第4题图)

5.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( ) A.矩形 B.直角梯形 C.菱形 D.正方形 6.已知两圆半径分别为2和3,圆心距为d,若两圆没有公共点,则下列结论正确的是( ) A.0 d 1 B.d 5 C.0 d 1或d 5 D.0≤d 1或d 5 7.小明外出散步,从家走了20分钟后到达了一个离家900米的报亭,看了10分钟的报纸然后用了15分钟返回到家.则下列图象能表示小明离家距离与时间关系的是( )

/

A. B. C. D.

8.已知y关于x的函数图象如图所示,则当y 0时,自变量x的取值范围是( ) A.x 0 B. 1 x 1或x 2

C.x 1 D.x 1或1 x 2 9.如图所示,给出下列条件:

① B ACD; ② ADC ACB;

ACAB2

; ④AC AD AB.

CDBC

其中单独能够判定△ABC∽△ACD的个数为( )

A

A.1 B.2 C.3 D.4

10.已知△ABC中,AB 17,AC 10,BC边上的高

C

AD 8, 则边BC的长为( )

(第9题图)

A.21 B.15 C.6 D.以上答案都不对

二、填空题:本大题共8小题,每小题填对得4分,满分32分.只要求填写最后结果.

m2 4mn 4n2

11.化简: .

m2 4n2

12.数据1、5、6、5、6、5、6、6的众数是 ,中位数是 ,方差是 . 13.已知点A是反比例函数y 的面积 .

3

图象上的一点.若AB垂直于y轴,垂足为B,则△AOBx

2x3x2 3x

14.解方程2,则方程可化为 . 2时,若设y 2

x 1xx 1

15.大家知道|5| |5 0|,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子|6 3|,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子|a 5|在数轴上的意义是 .

B

16.某楼梯的侧面视图如图所示,其中AB 4米,

BAC 30°, C 90°,因某种活动要求铺设红色地毯,

C A 则在AB段楼梯所铺地毯的长度应为 .

(第16题图)

17.已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是 . 18.在平面直角坐标系中,△ABC顶点A的坐标为(2,3),若以原点O为位似中心,画

△AEC的位似图形△A B C ,使△ABC与△A B C 的相似比等于

1

,则点A 的坐标2

为 .

三、解答题:本大题共7小题,满分58分.解答时请写出必要的文字说明与推演过程. 19.(本题满分5分)

1 0

计算: 1 |2| 5 (2009 π).

2

2

1

20.(本题满分6分)

为推进阳光体育活动的开展,某校九年级三班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与,各活动小组人数分布情况的扇形图和条形图

如下:

篮球足球 25%

90

(1)求该班学生人数;

(2)请你补上条形图的空缺部分;

(3)求跳绳人数所占扇形圆心角的大小.

21.(本题满分7分)

如图,PA为⊙O的切线,A为切点.直线PO与⊙O交于B、C两点, P 30°,连接AO、AB、AC.求证:△ACB≌△APO.

C P O B

(第21题图)

22.(本题满分8分)

观察下列方程及其解的特征:

1

2的解为x1 x2 1; x151

(2)x 的解为x1 2,x2 ;

x221101

(3)x 的解为x1 3,x2 ;

x33

(1)x

…… ……

解答下列问题:

126

的解为 ; x5

11

(2)请猜想:关于x的方程x 的解为x1 a,x2 (a 0);

xa

126

(3)下面以解方程x 为例,验证(1)中猜想结论的正确性.

x5

(1)请猜想:方程x

解:原方程可化为5x 26x 5.

(下面请大家用配方法写出解此方程的详细过程)

23.(本题满分10分) 根据题意,解答下列问题:

2

(1)如图①,已知直线y 2x 4与x轴、y轴分别交于A、B两点,求线段AB的长; (2)如图②,类比(1)的求解过程,请你通过构造直角三角形的方法,求出两点M(3,4),

N( 2, 1)之间的距离;

(3)如图③,P2(x1,y2)是平面直角坐标系内的两点.

1(x1,y1),P求证:PP12

P(x

11 (第23题图①)

(第23题图②)

(第23题图③)

24.(本题满分10分)

某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题: (1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;

(2)当降价多少元时,每星期的利润最大?最大利润是多少? (3)请画出上述函数的大致图象.

25.(本题满分12分)

如图①,某产品标志的截面图形由一个等腰梯形和抛物线的一部分组成,在等腰梯形ABCD中,AB∥DC,AB 20cm,DC 30cm, ADC 45°.对于抛物线部分,其顶点为CD的中点O,且过A、B两点,开口终端的连线MN平行且等于DC. (1)如图①所示,在以点O为原点,直线OC为x轴的坐标系内,点C的坐标为(15, 0),试求A、B两点的坐标;

(2)求标志的高度(即标志的最高点到梯形下底所在直线的距离);

(3)现根据实际情况,需在标志截面图形的梯形部分的外围均匀镀上一层厚度为3cm的保护膜,如图②,请在图中补充完整镀膜部分的示意图,并求出镀膜的外围周长. A B

D C (第25题图①) (第25题图②)

滨州市二○○九年初级中学学业水平考试

数学试题(A)解答参考及评分标准

评卷说明:

1.选择题的每小题和填空题中的每个空,只有满分和零分两个评分档,不给中间分. 2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分标准进行评分.

3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但后续部分最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.

二、填空题(本大题共8小题,每小题4分,满分32分) 11.

m 2n5

12.6,5.5,(分值分配:1分、1分、2分)

m 2n233

14.2y 2

y2

13.

15.表示数a的点与表示 5的点之间的距离 16.(2米(或5.464米) 17.

5

x 5 2

18.(4,6)或( 4, 6)

三、解答题(本大题共7小题,满分58分) 19.(本题满分5分)

解:原式 1 22 5 ································· 4分(四个考查点,做对1个就得1分)

2 ··························································································································· 5分

20.(本题满分6分)

解:(1)由扇形图可知,乒乓球小组人数占全班人数的

1

. 4

由条形图可知,乒乓球小组人数为12. ··············································································· 1分 故全班人数为12

1

································································································· 2分 48. ·

4

(注:只有最后一步做对也得满分,但只有结果不得分.) (2)由扇形图可知,篮球小组人数为48 25% 12. 由条形图可知,足球小组人数为16.

故跳绳小组人数为48 (16 12 12) 8. ········································································· 3分 所以各小组人数分布情况的条形图为

············································································ 4分(注:本小题只画对图也得满分2分.)

81

································································ 5分 , ·

4861

所以,它所占扇形圆心角的大小为360° 60°. ·························································· 6分

6

(3)因为跳绳小组人数占全班人数的

21.(本题满分7分)

证明: PA为 O的切线, PAO 90°. ·································································· 1分 又 P 30°, AOP 60°, ······················································································ 2分

1

··································································································· 3分 C AOP 30°, ·

2

······················································································································ 4分 C P, ························································································································ 5分 AC AP. ·

又BC为 O直径, CAB PAO 90°, ································································ 6分

·························································································· 7分 △ACB≌△APO(ASA). ·

(注:其它方法按步骤得分.)

22.(本题满分8分) 解:(1)x1 5,x2

1; ································································································· 1分 5

a2 11(2)(或a ); ·································································································· 3分

aa

(3)二次项系数化为1,得x

2

2

2

26

···································································· 4分 x 1. ·

5

2

26 13 13

x 1 , ·配方,得x ································································· 5分 5 5 5 13 144

x . ················································································································ 6分

525

2

1312

····································································································· 7分 . ·

55

1

解得x1 5,x2 .··········································································································· 8分

5

1

经检验,x1 5,x2 都是原方程的解(此环节有无暂不得分与扣分)

5

开方,得x

23.(本题满分10分)

解:(1)由y 0,得x 2,所以点A的坐标为( 2,····················· 1分 0),故OA 2. ·同理可得OB 4. ················································································································ 2分 所以在Rt△AOB中,AB

································································· 3分

(2)作MP x轴,NP y轴,MP交NP于点P. ···················································· 4分 则MP NP,P点坐标为(3,·················································································· 5分 1). ·故PM 4 ( 1) 5,PN 3 ( 2) 5. ······································································ 6分 所以在Rt△MPN中,MN . ······························································· 7分 (注:若直接运用了(3)的结论不得分.)

y轴,P2P交PP(3)作P2P x轴,PP11于点P.

则P,点P的坐标为(x2,y1). ············································································ 8分 2P PP1

x2 x1(不加绝对值符号此处不扣分). 故P2P y2 y1,PP··································· 9分 1

所以在Rt△P2PP12 1中,PP24.(本题满分10分)

解:(1)y (60 x)(300 20x) 40(300 20x), ······················································ 3分 即y 20x 100x 6000. ····························································································· 4分 因为降价要确保盈利,所以40 60 x≤60(或40 60 x 60也可). 解得0≤x 20(或0 x 20). ···················································································· 6分 (注:若出现了x 20扣1分;若直接写对结果,不扣分即得满足2分.) (2)当x

2

················································ 10分

100

······················································································ 7分 2.5时, ·

2 ( 20)

4 ( 20) 6000 1002

6125, y有最大值

4 ( 20)

即当降价2.5元时,利润最大且为6125元. ········································································ 8分 (3)函数的大致图象为(注:右侧终点应为圆圈,若画成实点扣1分;左侧终点两种情况均可.) ································································································································ 10分

25.(本题满分12分)

解:(1)作AE DC,BF DC,垂足分别为E,F.

···················· 1分 AB∥DC, 四边形AEFB为矩形, AE BF,AB EF 20. ·

又 AD BC,

1

··························· 2分 Rt△ADE≌Rt△BCF(HL), DE FC (30 20) 5. ·

2

又 ADE BCF 45°,

···························································································· 3分 AE BF DE FC 5. ·

又OD OC 15, OE OF 10.

····································································· 4分 5). ·5),(10, 点A,B的坐标分别为( 10,

(2)设抛物线的函数解析式为y ax. ············································································ 5分 由点B(10,5)在其图象上得5 100a,解得a

2

1

. 20

抛物线的函数解析式为y

12

················································································· 6分 x. ·

20

∥DC, 点M,N关于y轴对称, 又 MN

点N的横坐标为15,代入y

故标志的高度为

1245

. x得y

204

45

cm. ········································································································ 8分 4

(3)镀膜示意图如下:

20cm

45°

··············································································································································· 10分 由示意图可知,镀膜外围周长l由四条线段长和四条半径为3cm的弧长构成,

故l 2 20 30

135 π 345 π 3

2 2 50 6π.

180180

所以镀膜的外围周长为50 6π)cm. ·································································· 12分

2009年山东省滨州市中考数学试题及答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
    ×
    二维码
    × 游客快捷下载通道(下载后可以自由复制和排版)
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
    × 常见问题(客服时间:周一到周五 9:30-18:00)