手机版

统计学习[The Elements of Statistical Learning]第四章习题

发布时间:2024-11-28   来源:未知    
字号:

The Elements of Statistical Learning: Data Mining, Inference, and Prediction.(Second Edition)《统计学习基础——数据挖掘、推理与预测》部分章节习题的部分参考解答。

TheElementofStatisticalLearning–Chapter4

oxstar@SJTUJanuary6,2011

Ex.4.1ShowhowtosolvethegeneralizedeigenvalueproblemmaxaTBasubjecttoaTWa=1bytransformingtoastandardeigenvalueproblem.

AnswerWisthecommoncovariancematrix,andit’spositive-semide nite,sowecande ne

b=Wa,

1

a=W b,

1

aT=bTW 1

Hencethegeneralizedeigenvalueproblem

max(aTBa)=max(bTW BW b)

a

b

1

1

subjectto

aTWa=bTW WW b=1

11

Sotheproblemistransformedtoastandardeigenvalueproblem.

Ex.4.2Supposewehavefeaturesx∈Rp,atwo-classresponse,withclasssizesN1,N2,andthetargetcodedas N/N1,N/N2.

1.ShowthattheLDAruleclassiestoclass2if

N N 1T 11T 112 1 xΣ( µ2 µ 1)>µ 2Σµ 2 µ 1Σµ 1+log log,

22NN

T

andclass1otherwise.

2.Considerminimizationoftheleastsquarescriterion

N i=1

(yi β0 βTxi)2.

satis esShowthatthesolutionβ

NN12 + Bβ=N( (N 2)ΣΣµ2 µ 1)N B=( (aftersimpli cation),whereΣµ2 µ 1)( µ2 µ 1)T. Bβisinthedirection( 3.HenceshowthatΣµ2 µ 1)andthus

∝Σ 1( βµ2 µ 1)

Thereforetheleastsquaresregressioncoe cientisidenticaltotheLDAcoe cient,uptoa

scalarmultiple.

4.Showthatthisresultholdsforany(distinct)codingofthetwoclasses.

The Elements of Statistical Learning: Data Mining, Inference, and Prediction.(Second Edition)《统计学习基础——数据挖掘、推理与预测》部分章节习题的部分参考解答。

0,andhencethepredictedvaluesf =β 0+β Tx.Considerthefollowing5.Findthesolutionβ

rule:classifytoclass2ify i>0andclass1otherwise.ShowthisisnotthesameastheLDAruleunlesstheclasseshaveequalnumbersofobservations.(Fisher,1936;Ripley,1996)Proof

1.Considerthelog-ratioofeachclassdensity(equation4.9intextbook)

log

π21Pr(G=2|X=x)

=log (µ2+µ1)TΣ 1(µ2 µ1)+xTΣ 1(µ2+µ1)

Pr(G=1|X=x)π12

Whenit>0,theLDArulewillclassifyxtoclass2,meanwhile,weneedtoestimatethe

parametersoftheGaussiandistributionsusingourtrainingdata

1 1( 1( µ2+µ 1)TΣµ2 µ 1)+log(π1) log(π2)xTΣµ2 µ 1)>( 2

N N 1T 11T 112

=µ 2Σµ 2 µ 1Σµ 1+log log22NN

2.Letβ =(β,β0)TandcomputethepartialdeviationoftheRSS(β ),thenwehave

N RSS(β )

= 2(yi β0 βTxi)=0

β0

i=1N RSS(β )

= 2xi(yi β0 βTxi)=0

βi=1

(1)(2)

Wecanalsoderivethat

N1 β0=(yi βTxi)//from(1)

Ni=1

NNN 1 T

xi[β(xi x¯)]=xiyi yj//from(2)(3)

Ni=1i=1j=1

(3)(4)

=

2 k=1gi=k

xi

N1y1+N2y2yk

N

(5)

gi=k

==

2 k=1

Nkµ k

Nyk (N1y1+N2y2)

N

//xi=Nkµ k(6)(7)(8)

N1N2

(y2 y1)( µ2 µ 1)N=N( µ2 µ 1)//y1=N/N1,y2=N/N2

The Elements of Statistical Learning: Data Mining, Inference, and Prediction.(Second Edition)《统计学习基础——数据挖掘、推理与预测》部分章节习题的部分参考解答。

Wealsohave

=(N 2)Σ

2 k=1gi=k

(xi µ k)(xi µ k)T(xixT T kµ Ti 2xiµk+µk)xixT kµ Ti Nkµk

//

//xT k=xiµ Tiµk

gi=k

(9)

=

2 k=1gi=k

(10)

=

2

gi=k

xi=Nkµ k(11)

k=1

=

N i=1

N i=1

xixT 1µ T 2µ Ti (N1µ1+N2µ2)

xk

2

k=1

(12)(13)(14)

xix¯T=

=

2

k=1gi=k

N

gi=k

xk

T

1

(N1µ 1+N2µ 2)(N1µ 1+N2µ 2)T N

i=1

Meanwhile

N i=1

xi[βT(xi x¯)]=

N i=1

xi[(xi x¯)Tβ]=xixTi

N i=1

xix¯Tβ

(15)

1TTT =(N 2)Σ+(N1µ 1µ 1+N2µ 2µ 2) (N1µ 1+N2µ 2)(N1µ 1+N2µ 2)β//from(12)(14)

N

(16)

+N1N2( =(N 2)Σµ2µ T 1µ T 2µ T 1µ T(17)2 µ2 µ1+µ1)β

NN12 Bβ=N( +Σµ2 µ 1)//from(8)(18)=(N 2)Σ

N3.

Bβ=( Σµ2 µ 1)( µ2 µ 1)Tβ

Bβisinthedirection( ( µ2 µ 1)Tβisascalar,thereforeΣµ2 µ 1),and

NN112 = 1N( Σµ2 µ 1) ΣBβ//from(18)β

N 2N

1N1N2

1( =N ( µ2 µ 1)TβΣµ2 µ 1)

N 2N 1( ∝Σµ2 µ 1)4.ByreplacingNwith

N1N2

(y2

(19)(20)(21)

N1N2N(N 2)

y1)(from(7)and(8))andfrom(20),westillhave

T 1( 1( (y2 y1) ( µ2 µ 1)βΣµ2 µ 1)∝Σµ2 µ 1)

5.Theboundaryconditionisyi=0,sofrom(3)wehave

N 1 0= Txi=β Tµ ββ =µ Tβ

Ni=1

The Elements of Statistical Learning: Data Mining, Inference, and Prediction.(Second Edition)《统计学习基础——数据挖掘、推理与预测》部分章节习题的部分参考解答。

Whentheclasseshaveequalnumbersofobservations,i.e.N1=N2=N/2

µ =

Thenwehavepredictedvalues

=(x µ ∝(x µ 1( f )Tβ )TΣµ2 µ 1)(23)1 1( 1( µ1+µ 2)TΣ∝xTΣµ2 µ 1) ( µ2 µ 1)//from(22)(24)2

WhiletheLDAruleindicatethatthelog-ratioofeachclassdensity=zeroistheboundarycondition(N1=N2soπ1=π2)

log

1Pr(G=2|X=x)

= (µ2+µ1)TΣ 1(µ2 µ1)+xTΣ 1(µ2+µ1)

Pr(G=1|X=x)2

(25)

1

( µ1+µ 2)2

(22)

Compare(24)with(25),wecan ndthattheyarethesamerule.ButwhenN1=N2,theserulesareobviouslydi erent.

vialinearregression.Indetail,letEx.4.3SupposewetransformtheoriginalpredictorsXtoY

=X(XTX) 1XTY=XB ,whereYistheindicatorresponsematrix.SimilarlyforanyinputY

Tx∈RK.ShowthatLDAusingY isidenticaltoLDAx∈Rp,wegetatransformedvectory =B

intheoriginalspace.

Tx,sowehaveProofTransformedvectory =B

Ty igi=kBxigi=ky Tµ==B xµ k=k

NkNi

Ty igi= Bxigi= y Tµ==B xµ =

N Ni N y y T

( y µ )( y µ )iik=1g=kkki yΣ=

N K

N T T x xk)(xi µk)Bk=1gi=kB(xi µ=

N K

TΣ xB =B

Substitute(26)(27)(30)forµgiandΣinequation(4.9)

log

=yπkPr(G=k|Y )1xT T 1 T=logµk+µ xB( µx x ( )B(BΣxB)k µ )π 2Pr(G= |Y=y )

(B TΣ xB ) 1B T( +xTBµx µ x)

k

(26)(27)(28)(29)(30)

T( 1µx µ (B TΣ xB ) 1Bµx x xInfact,ifBk µ )=Σx( k ),LDAusingYisidenticaltoLDAinthe

originalspace.Sowewillproveitbellow.

Yisaindicatorresponsematrix,therefore

Nkµ x=xi=XTyk(31)k

NK 1T x=ΣxixTNkµ xµxi k( k)i=1

k=1

K 1T

=XTX XT(ykyk)XN K

k=1

gi=k

//from(12)(32)(33)(34)

=

1

(XTX XTYYTX)

N K

The Elements of Statistical Learning: Data Mining, Inference, and Prediction.(Second Edition)《统计学习基础——数据挖掘、推理与预测》部分章节习题的部分参考解答。

xB (B TΣ xB ) 1B Twhichsatis esHH=H.WehireWeneedaprojectionmatrixH=Σ

xB (B TΣ xB ) 1B TXTYforassistance,where(bythede nitionofB )HXTY=Σ

T=((XTX) 1XTY)T=YTX(XTX) 1B

1 xB =(XTX XTYYTX)(XTX) 1XTYΣ

N K1

XTY(I YTX(XTX) 1XTY)=

N K

TΣ xB ) 1=(YTX(XTX) 11XTY(I YTX(XTX) 1XTY)) 1(B

N KT

=(N K)(YX(XTX) 1XTY(I YTX(XTX) 1XTY)) 1

TXTY=YTX(XTX) 1XTY,wehaveLetP=B

xB =Σ

TΣ xB ) 1(B

1

XTY(I P)

N K

=(N K)(P(I P)) 1

P(I P)isinvertible,soPandI Pareinvertible,hence

TΣ xB ) 1=(N K)(I P) 1P 1(B

1

XTY(I P)(N K)(I P) 1P 1YTX(XTX) 1XTYHXTY=

N K=XTYHerewecanprove

HXTY=XTY HXTyk=XTyk

HNkµ x x//from(31)k=Nkµk

xB (B TΣ xB ) 1B Tµ Σ x x//de nitionofHk=µk (B TΣ xB ) 1B Tµ 1µ x=Σ x B

k (B TΣ xB ) 1B T( Bµxk

x

µ x )

k

x 1( =Σ xxµk µ )

统计学习[The Elements of Statistical Learning]第四章习题.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
    ×
    二维码
    × 游客快捷下载通道(下载后可以自由复制和排版)
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
    × 常见问题(客服时间:周一到周五 9:30-18:00)