山东建筑大学数字图像处理课程设计
态场景下的运动情况。由于存在噪声干扰、光源分布、光照阴影、物体遮挡等因素,计算得到光流场分布的准确性易受影响;并且光流法的计算过程相对复杂、耗时更长,如果没有专业硬件支持加速,则难以实现实时的检测。
2.2.3边缘检测方法
图像的边缘为图像中灰度发生急剧变化的区域,边界分为阶跃状和屋顶状两种类型。图像的边缘一般对应一阶导数较大,二阶导数为零的点。常用到的边缘检测方法有 Robert 算子、Sobel 算子、Laplace 算子等。与相邻帧差法和背景差分法比较,边缘检测方法有利于邻近运动目标的区分和运动目标特征的提取,对背景噪声的鲁棒性很大,但其运算复杂度也相对较大。运动图像边缘的检测可以通过时间和空间上的差分来获得,空间上的差分可以使用已有的各种边缘检测算法,时间上的差分可以通过计算连续帧的差来获得,也可以通过计算当前图像与背景图像的差分图像,然后求其边缘来计算。
2.4 本章小结
运动目标检测是智能视频监控的关键步骤,其运动跟踪同样要以运动目标检测为基础。本章首先介绍了图像处理相关的基础知识,包括颜色空间、图像预处理和形态学方法等;然后重点介绍了包括背景差分、光流法和边缘检测等的运动检测方法,以及基于特征、基于模型、和基于主动轮廓等的运动检测方法。本设计主要用背景差分的方法检测视频中的行人。