山东建筑大学数字图像处理课程设计
有效地分类存储,更毋论其他的智能处理,因此数据分析工作要耗费相当多的时间。而经常发生的误报漏报现象也造成了无用数据的进一步增加,带来更大的困难。
(5)响应时间长。对于安全威胁的响应速度直接关系到一个安全系统的整体性能。传统的视频监控系统通常由人来对威胁做出响应和处理,而实际处理问题时,往往同时涉及到多个功能部分,需要多个相关部门的协调配合,共同处理,因而对响应时间有了更高的要求。为了解决上述导致视频监控系统效率低下的问题,人们把计算机视觉的相关技术引入视频监控中,从而发展起新型的视频监控技术—智能视频监控,也称自动视频监控,在视频监控系统中处于核心地位,对于整个系统的效率提高具有重要意义。
1.2.2 智能视频监控的研究内容
智能视频监控的研究内容包括运动目标检测、运动目标跟踪以及对监视场景 中目标行为的理解与描述,目标检测、目标分类、目标识别是视频处理中的基础部分,而行为分析和理解则属于更高级的处理分析部分。运动检测、目标分类和目标跟踪是研究者们关心最多的三个基本问题;而行为分析与理解因为跟应用直接相关,所以近些年成为被广泛关注的热点问题。
1.3 行人检测与跟踪
视频监控场景中行人是监控的主要对象,因此对行人的检测和跟踪是一个至关重要的问题,这属于智能视频监控系统的底层工作,其性能好坏将直接影响后续工作乃至整个系统的性能。
1.3.1 行人检测
行人检测就是把视频图像中的行人目标从背景中分割出来并精确定位。基于视觉的行人检测目前仍旧是计算机视觉领域的一个公认的难题。原因在于:行人同背景混合在一起,行人可能走,也有可能站着或者不可预测地改变运动方向;行人所处的背景非常复杂,特别是当视觉系统基于运动云台上的摄像系统时,背景的突然改变不可避免。
到目前为止,一些人体检测系统在某些约束环境中被证明能有效地检测行