We consider the dynamic scheduling of a two-part-type make-tostock production system using the model of Wein [12]. Exogenous demand for each part type is met from finished goods inventory; unmet demand is backordered. The control policy determines which pa
coupledtrajectoriesremaininthissegmentwhentype1demandsarriveorproductiontimesarecompleted.However,whenatype2demandarrivestothesystem,thecoupledtrajectoriesmoveintoSegment2. Segment2:
ζπInthissegment,X1<0,andXπ Xζ=e1.IfX1<0,thenboth
policiesproducetype1andthetrajectoriesstayinSegment2.IfππX1=0andX2=0bothpoliciesstillproducetype1,butwhenaproductiontimeiscomplete,thetrajectoriesmoveintoSegment1.IfζπππX1=0andX2<0,thenC1=1andC1=2,andwhenaproductiontimeiscompleted,thetrajectoriesmoveintoSegment3.
ζ Segment3:Inthissegment,X1=0,Xπ Xζ=e2(sothatwealso
πππhaveX1=0).Bothpoliciesproducetype2ifX2<0.IfX2=0,ζπ=1,andwhenaproductiontimeiscompleted,theC1=2andC1trajectoriesmoveintoSegment1,attheirhedgingpoints.Whena
type1demandarrivestothesystem,thecoupledtrajectoriesmoveintoSegment4.Otherwise,theystayinSegment3.
Segment4:
ζInthissegment,X1<0,Xπ Xζ=e2.Bothpoliciesstatetopro-
ducetype1,sothatbothtrajectoriesstayinSegment4untilaservicecompletionmakesthementerSegment3.
Fromthepreviousde nitionofthefoursegments,wehave
Xπ Xζ=
e1inSegment1and2e2inSegment3and4(14)(15)h1inSegment1
b1inSegment2c(Xπ) c(Xζ)= b2inSegment3and4
Ifwedenotebyp1,p2,p3andp4thestationaryprobabilitiesofbeinginSegment1,2,3and4respectively,weobtainfrom(15)
gπ gζ=h1p1 b1p2 b2(p3+p4).
Itremainsthentoderiveexpressionsforp1,p2,p3andp4.
13(16)