We consider the dynamic scheduling of a two-part-type make-tostock production system using the model of Wein [12]. Exogenous demand for each part type is met from finished goods inventory; unmet demand is backordered. The control policy determines which pa
Appendix
AProbabilityofNoLowPriorityCustomerInthissection,wederivethestationaryprobabilityofhavingnolowprioritycustomersinapriorityM/G/1queuewithtwoclassesofcustomersandpreemptiveresume.Customersofclass1and2arriveaccordingtoPoissonprocesseswithparametersλ1andλ2,respectively.Class1hasthehighestpriority.Theservicetimeshavearbitrarydistributionswithmean1/µ1and1/µ2.Letγ2=P(X2=0),λ=λ1+λ2andρ=λ1/µ1+λ2/µ2.
FromCorollary1ofKeilsonandServi[7]thepgfofthenumberofclass2customersinthesystemis:
πS2(u)=
where
isthepgfofthenumberofclass2customersinthesystem
giventhatnoclass2customerisinservice
αT2istheLaplacetransformofT2,theservicetimeofclass2σBP1istheLaplacetransformoftheclass1busyperiod 2,thetimefromthebeginningofserviceofclass2istheLaplacetransformofTαT 2=αT2(s+λ1 λ1σBP1(s))untilthecustomerleavesthesystem,αT 2 2]=λ2E[Tρ 2 2]).(s)=(1 αT(λ2))/(sE[TαT 22πB2
Wewillusethefactthat
γ2(λ2)αT 2πB2(0).=πS2(0)=(1 ρ 2) 1 ρ 2αT(λ)2 2(30)(λ2 λ2u)(1 ρ 2)αT 2πB2(u), 1 ρ 2αT(λ λu)22 2(29)
ButfromKeilsonandServi[7],wealsohave,
πB2(0)=
ρ 21 ρ1[λ λ1σBP1(λ2)]λ2ρ2=.1 ρ1
19(31)(32)