One of the essential problems in computer vision is to recover the distance information of an object from captured images. Its application areas range from industrial inspection and reverse engineering to autonomous robot navigation
Fig.4Intensitypro lesofdefocusededgesaccordingtopillboxandGaussian
models.
kDf
,c =
p f
38
basedontheGaussianlinespreadfunctionmodel.Thein-tensitypro lesofdefocusededgesaccordingtothepillboxfunctionandGaussianmodelareshowninFig.4.Foredgeimages,ablurcircleisreducedtoahorizontalblurlength.ThelengthcanbeestimatedfrombluranalysisonstepedgesandusedinEq. 37 fordepthrecovery.
3FocusCalibrationandBlurExtentEstimation3.1DefocusBlurandFocusCalibration
TocalculatethedepthofanobjectusingEqs. 8 or 37 foragivensetofcameraparameters,thecorrespondingfocusingrangepandtheblurextentsc and havetobeidenti ed.AssuggestedbyEq. 1 ,thefocuspositionqcan
bederivedforanarbitrarydistancepoftheobject.Thus,adistancepcanbeassignedandusedto ndthecorrespond-inglenspositionatq,whichwillbe xedforblurextentestimationanddepthrecovery.Theproblemofdepthrecov-eryisthendividedintotwosubproblems—focuscalibra-tionforthefocusingrangepandblurestimationfortheparameterscandd.
Forthefocuscalibration,aplanarobjectwithastepedgeisplacedinfrontofthecameraata xeddistance.Asequenceofimagesiscapturedwithdifferentlensposi-tions.Thebestfocusedimageandthecorrespondinglenspositionareselectedbytheimagewiththelargestaveragegradientchangeintheedgedirection.Forthe xedlensposition,theobjectlocationisthenslightlyadjustedto ndthebestfocusingrangep.Inthisfocuscalibrationstage,theobjectisusuallyplacedclosetothecamerabecause
the