高中数学教案
练习:判断下列函数是否为偶函数?(口答)
2.观察下面两个函数的图像,回答以下问题。
问题1:观察图像,从对称的角度思考,它们有什么共同特征?
问题2:分别求当自变量x=±1, ±2时的函数值,从中你能发现什么规律?
问题3:是否对于定义域内所有的x,都有类似的情况?
问题4:类比偶函数的定义给出奇函数的定义。
学生先进行独立思考后,小组内进行交流,形成小组最后结论,最终展示本组成果。小组代表展示结果后,师生互动得出奇函数的定义:设函数f(x)的定义域为D,如果对D内的任意一个数X,都有,且,则这个函数叫做偶函数。
练习:判断下列函数是否为偶函数?(口答)
3.强化定义,深化内涵
对奇函数、偶函数定义的说明:
(1)如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x),具有奇偶性。(2)函数具有奇偶性的前提是:定义域关于原点对称。
(3)若f(x)为奇函数,则f(-x)=-f(x)成立;若f(x)为偶函数,则f(-x)=f(x)成立。
三、讲练结合,巩固提升
例1.利用定义判断下列函数的奇偶性
小结:用定义判断函数奇偶性的步骤: :
(1)先求定义域,看是否关于原点对称;
(2)再判断f(-x)与f(x)的关系;
(3)若f(-x)=f(x)则f(x)是偶函数;若f(-x)=-f(x),则f(x)是奇函数。
例题2:利用定义判断下列函数的奇偶性
四、总结升华
师生一起回顾函数奇偶性的定义,图像性质,已经如何判断一个函数的奇偶性。
五、布置作业
1.教材42页习题
2.设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+1,求x<0时,f(x)的解析式。
板书设计:
函数的奇偶性
偶函数:
奇函数:
判断函数奇偶性步骤:
一看
二找
三判断
结尾处,小编送给大家一段话。米南德曾说过,“学会学习的人,是非常幸福的人”。在每个精彩的人生中,学习都是永恒的主题。作为一名专业文员教职,我更加懂得不断学习的重要性,“人生在勤,不索何获”,只有不断学习才能成就更好的自己。各行各业从业人员只有不断的学习,掌
握最新的相关知识,才能跟上企业发展的步伐,才能开拓创新适应市场
的需求。本文档也是由我工作室专业人员编辑,文档中可能会有错误,
如有错误请您纠正,不胜感激!
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal 5/ 6