流水线车间调度问题matlab源程序
子单点交叉
a=[A(1:cp,:);B((cp+1):m,:)];%子代个体
b=[B(1:cp,:);A((cp+1):m,:)];
else
cp=unidrnd(n-1);%随机选择交叉点
b=[B(:,1:cp),A(:,(cp+1):n)];
end
newfarm{i}=a;%交叉后的子代存入newfarm
newfarm{i+1}=b;
end
%新旧种群合并
FARM=[farm,newfarm];
%第四步:选择复制
FITNESS=zeros(1,2*N);
fitness=zeros(1,N);
plotif=0;
for i=1:(2*N)
X=FARM{i};
Z=COST(X,T,P,plotif);%调用计算费用的子函数
FITNESS(i)=Z;
end
%选择复制采取两两随机配对竞争的方式,具有保留最优个体的能力
Ser=randperm(2*N);
for i=1:N
f2=FITNESS(Ser(2*i));
if f1<=f2
farm{i}=FARM{Ser(2*i-1)};
fitness(i)=FITNESS(Ser(2*i-1));
else
farm{i}=FARM{Ser(2*i)};
end
end
%记录最佳个体和收敛曲线
minfitness=min(fitness)
meanfitness=mean(fitness)
LC1(counter+1)=minfitness;%收敛曲线1,各代最优个体适应值的记录
LC2(counter+1)=meanfitness;%收敛曲线2,各代群体平均适应值的记录
pos=find(fitness==minfitness);
Xp=farm{pos(1)};
%第五步:变异
for i=1:N
if Pm>rand;%变异概率为Pm
X=farm{i};
I=unidrnd(m);
J=unidrnd(n);
X(I,J)=1+(P(J)-eps)*rand;
farm{i}=X;
end
end
farm{pos(1)}=Xp;
counter=counter+1
end
%输出结果并绘图
figure(1);
plotif=1;
X=Xp;
[Zp,Y1p,Y2p,Y3p]=COST(X,T,P,plotif);
figure(2);
plot(LC1);
figure(3);
plot(LC2);
function [Zp,Y1p,Y2p,Y3p]=COST(X,T,P,plotif)
% JSPGA的内联子函数,用于求调度方案的Makespan值
% 输入参数列表
% X 调度方案的编码矩阵,是一个实数编码的m×n矩阵
% T m×n的矩阵,存储m个工件n个工序的加工时间
% P 1×n的向量,n个工序中,每一个工序所具有的机床数目
% plotif 是否绘甘特图的控制参数
% 输出参数列表
% Zp 最优的Makespan值
% Y1p 最优方案中,各工件各工序的开始时刻
% Y2p 最优方案中,各工件各工序的结束时刻
% Y3p 最优方案中,各工件各工序使用的机器编号
%第一步:变量初始化
[m,n]=size(X);
Y1p=zeros(m,n);
Y2p=zeros(m,n);
Y3p=zeros(m,n);
%第二步:计算第一道工序的安排
Q1=zeros(m,1);
Q2=zeros(m,1);
R=X(:,1);%取出第一道工序
Q3=floor(R);%向下取整即得到各工件在第一道工序使用的机器的编号
%下面计算各工件第一道工序的开始时刻和结束时刻
for
i=1:P(1)%取出机器编号
pos=find(Q3==i);%取出使用编号为i的机器为其加工的工件的编号
lenpos=length(pos);
if lenpos>=1
Q1(pos(1))=0;
if lenpos>=2
for j=2:lenpos