萤火虫算法
J.Senthilnathetal./SwarmandEvolutionaryComputation1(2011)164–171165
Wealsopresenttheresultsofotherninemethodsusedintheliterature[9,14].Fortheeaseofunderstandingandcomparison,wefollowthesamemannerofanalysisanddiscussions,usedin[9].TheonlykeydifferenceistheuseoftheFAalgorithminthisstudy.Contributionofthispaper:Inthiswork,foragivendatasettheFAisusedtofindtheclustercenters.Theclustercentersareobtainedbyrandomlyselecting75%ofthegivendataset.This75%ofthegivendataset,wecallasatrainingset.TheFAalgorithmusesthistrainingsetandtheclustercentersareobtained.Inordertostudy,theperformanceoftheFAalgorithm,theremaining25%ofdatasetisused(calledtestdataset).TheperformancemeasureusedintheFAistheclassificationerrorpercentage(CEP).ThisCEPisdefinedastheratioofnumberofmisclassifiedsamplesinthetestdatasetandtotalnumberofsamplesinthetestdataset.Thiscanbedonebecauseinthetestdataset,weknowtheactualclassofthetestdata.Thedistancesbetweenthegiventestdataandtheclustercentersarecomputed.Thedataisassignedtotheclustercenter(class)thathastheminimumdistance.Hence,wecancomputetheperformancemeasure—classificationerrorpercentage(CEP).
ThepaperisorganizedastheimplementationoftheFAalgorithminSection2,clusteringusingtheFAandperformanceevaluationinSections3and4respectively,andthenresultspresentedanddiscussedinSection5.WeconcludethepaperinSection6bysummarizingtheobservations.2.Fireflyalgorithm
Firefliesareglowwormsthatglowthroughbioluminescence.Forsimplicityindescribingourfireflyalgorithm,wenowusethefollowingthreeidealizedrules:(i)allfirefliesareunisexsothatonefireflywillbeattractedtootherfirefliesregardlessoftheirsex;(ii)animportantandinterestingbehavioroffirefliesistoglowbrightermainlytoattractpreyandtosharefoodwithothers;(iii)attractivenessisproportionaltotheirbrightness,thuseachagentfirstlymovestowardaneighborthatglowsbrighter[21].TheFireflyAlgorithm(FA)[18]isapopulation-basedalgorithmtofindtheglobaloptimaofobjectivefunctionsbasedonswarmintelligence,investigatingtheforagingbehavioroffireflies.IntheFA,physicalentities(agentsorfireflies)arerandomlydistributedinthesearchspace.Agentsarethoughtofasfirefliesthatcarryaluminescencequality,calledluciferin,thatemitlightproportionaltothisvalue.Eachfireflyisattractedbythebrighterglowofotherneighboringfireflies.Theattractivenessdecreasesastheirdistanceincreases.Ifthereisnobrighteronethanaparticularfirefly,itwillmoverandomly.IntheapplicationoftheFAtoclustering,thedecisionvariablesareclustercenters.TheobjectivefunctionisrelatedtothesumonalltrainingsetinstancesofEuclideandistanceinanN-dimensionalspace,asgivenin[9].
Basedonthisobjectivefunction,initially,alltheagents(fireflies)arerandomlydispersedacrossthesearchspace.Thetwophasesofthefireflyalgorithmareasfollows.
i.Variationoflightintensity:Lightintensityisrelatedtoobjectivevalues[18].Soforamaximization/minimizationproblemafireflywithhigh/lowintensitywillattractanotherfireflywithhigh/lowintensity.Assumethatthereexistsaswarmofnagents(fireflies)andxirepresentsasolutionforafireflyi,whereasf(xi)denotesitsfitnessvalue.HerethebrightnessIofafireflyisselectedtoreflectitscurrentpositionxofitsfitnessvaluef(x)[18].Ii=f(xi),
1≤i≤n.
(1)
ii.Movementtowardattractivefirefly:Afireflyattractivenessis
proportionaltothelightintensityseenbyadjacentfireflies[18].Eachfireflyhasitsdistinctiveattractivenessβwhichimplieshowstrongitattractsothermembersoftheswarm.However,the
attractivenessβisrelative,itwillvarywiththedistancerijbetweentwofirefliesiandjatlocationsxiandxjrespectively,isgivenasrij=‖xi xj‖.
(2)
Theattractivenessfunctionβ(r)ofthefireflyisdeterminedby
β(r)=β0e γr
2
(3)
whereβ0istheattractivenessatr=0andγisthelightabsorptioncoefficient.
Themovementofafireflyiatlocationxiattractedtoanothermoreattractive(brighter)fireflyjatlocationxjisdeterminedbyxi(t+1)=xi(t)+βγr2
0e (xj xi).
(4)
AdetaileddescriptionofthisFAisgivenin[18].Apseudo-codeofthisalgorithmisgivenbelow.
Pseudo-code:AHigh-LevelDescriptionoffireflyalgorithmInput:
Createaninitialpopulationoffirefliesnwithind-dimensionalsearchspacexik,i=1,2,...,nandk=1,2,...,d
Evaluatethefitnessofthepopulationf(xik)whichisdirectlyproportionaltolightintensity,γIikAlgorithm’sparameter—β0Output:
Obtainedminimumlocation:ximinbegin
repeat
fori=1ton
forj=1ton
if(Ij<Ii)
Movefireflyitowardjind-dimensionusingEq.(4)endif
Attractivenessvarieswithdistancerviaexp[ r2]
EvaluatenewsolutionsandupdatelightintensityusingEq.(1)endforjendfori
Rankthefirefliesandfindthecurrentbestuntilstopconditiontrueend
3.ClusteringusingFA
Theclusteringmethods,separatingtheobjectsintogroupsorclasses,aredevelopedbasedonunsupervisedlearning.Intheunsupervisedtechnique,thetrainingdatasetaregroupedfirst,basedsolelyonthenumericalinformationinthedata(i.e.clustercenters),andarethenmatchedbytheanalysttoinformationclasses.Thedatasetsthatwetackledcontaintheinformationofclassesforeachdata.Therefore,themaingoalistofindthecentersoftheclustersbyminimizingtheobjectivefunction,thesumofdistancesofthepatternstotheircenters.
ForagivenNobjectstheproblemistominimizethesumofsquaredEuclideandistancesbetweeneachpatternandallocateeachpatterntooneofkclustercenters.TheclusteringobjectivefunctionisthesumoferrorsquaredasgiveninEq.(5)isdescribedasin[22]:
KJ(K)=
(xi ck)
(5)
k=1i∈ck