||y yh||
fit 100 1 ||y ||
AR误差
e = pe(m,data)
pe误差计算。采用yh=predict(m,data,1)进行预测,然后计算误差e=data-yh;
[e,r]= resid(m,data,mode,lags); resid(r)
resid计算并检验误差。采用pe计算误差;在无输出的情况下,绘出误差图,误差曲线应足够小,黄色区域为99%的置信区间,误差曲线在该区域内表明通过检验。
Matlab练习
确定模型阶数
采用ASCE benchmark模型120DOF,选取y方向的响应,共8个。首先,对响应数据进行标准化处理;其次,将标准化处理后的数据建立AR模型;最后,确定合适的模型阶次,通过选取一系列阶数,分别计算对应的AIC值,从图中可以看出,阶次80以后的AIC值变化不大,因此,合适的阶次选择为80。