解:∵x=1时,2x3-13x2+3=0,∴原式有一次因式2x-1, 2
设2x3-13x2+3=(2x-1)(x2+ax-3), (a是待定系数)
比较右边和左边x2的系数得 2a-1=-13, a=-6
∴2x3-13x+3=(2x-1)(x2-6x-3)。
例4因式分解2x2+3xy-9y2+14x-3y+20
解:∵2x2+3xy-9y2=(2x-3y)(x+3y), 用待定系数法,可设
2x2+3xy-9y2+14x-3y+20=(2x-3y+a)(x+3y+b),a,b是待定的系数, 比较右边和左边的x和y两项 的系数,得
a 4 a 2b 14 解得 b 5 3a 3b 3
∴2x2+3xy-9y2+14x-3y+20=(2x-3y+4)(x+3y+5)
又解:原式=2x2+(3y+14)x-(9y2+3y-20) 这是关于x的二次三项式 常数项可分解为-(3y-4)(3y+5),用待定系数法,可设
2x2+(3y+14)x-(9y2+3y-20)=[mx-(3y-4)][nx+(3y+5)] 比较左、右两边的x2和x项的系数,得m=2, n=1
∴2x2+3xy-9y2+14x-3y+20=(2x-3y+4)(x+3y+5)
丙练习19
1. 分解因式:①x4+x2y2+y4 ②x4+4 ③x4-23x2y2+y4
2. 分解因式: ①x3+4x2-9 ②x3-41x+30
③x3+5x2-18 ④x3-39x-70
3. 分解因式:①x3+3x2y+3xy2+2y3 ②x3-3x2+3x+7
③x3-9ax2+27a2x-26a3 ④x3+6x2+11x+6
⑤a3+b3+3(a2+b2)+3(a+b)+2
4. 分解因式:①3x3-7x+10 ②x3-11x2+31x-21
③x4-4x+3 ④2x3-5x2+1
5. 分解因式:①2x2-xy-3y2-6x+14y-8 ②(x2-3x-3)(x2+3x+4)-8
③(x+1)(x+2)(x+3)(x+4)-48 ④(2x-7)(2x+5)(x2-9)-91
6.分解因式: ①x2y2+1-x2-y2+4xy ②x2-y2+2x-4y-3
③x4+x2-2ax -a+1 ④(x+y)4+x4+y4
⑤(a+b+c)3-(a3+b3+c3)
7. 己知:n是大于1的自然数 求证:4n2+1是合数
8.己知:f(x)=x2+bx+c, g(x)=x4+6x2+25, p(x)=3x4+4x2+28x+5 且知f(x)是g(x)的因式,也是p(x)的因式
求:当x=1时,f(x)的值
返回目录 参考答案 上一页 下一页
51