手机版

正十七边形尺规作图

时间:2025-04-24   来源:未知    
字号:

讲解最清楚的,我试过了,思路很清晰

步骤一:

给一圆O,作两垂直的半径OA、OB,

作C点使OC=1/4OB,

作D点使∠OCD=1/4∠OCA,

作AO延长线上E点使得∠DCE=45度。

步骤二:

作AE中点M,并以M为圆心作一圆过A点,此圆交OB于F点,

再以D为圆心,作一圆过F点,此圆交直线OA于G4和G6两点。

步骤三:

过G4作OA垂直线交圆O于P4,

过G6作OA垂直线交圆O于P6,

则以圆O为基准圆,A为正十七边形之第一顶点P4为第四顶点,P6为第六顶点。

连接P4P6,以1/2弧P4P6为半径,在圆上不断截取,即可在此圆上截出正十七边形的所有顶点。

历史

最早的十七边形画法创造人为高斯。高斯(1777~1855年),德国数学家、物理学家和天文学家。在童年时代就表现出非凡的数学天才。三岁学会算术,八岁因发现等差数列求和公式而深得老师和同学的钦佩。1799年以代数基本定理的四个漂亮证明获得博士学位。高斯的数学成就遍及各个领域,其中许多都有着划时代的意义。同时,高斯在天文学、大地测量学和磁学的研究中也都有杰出的贡献。

1801年,高斯证明:如果k是质数的费马数,那么就可以用直尺和圆规将圆周k等分。高斯本人就是根据这个定理作出了正十七边形,解决了两千年来悬而未决的难题。

道理

讲解最清楚的,我试过了,思路很清晰

当时,如果高斯的老师告诉了高斯这是道2000多年没人解答出来的题目,高斯就不会画出这个正十七边形。这说明了你不怕困难,困难就会被攻克,当你惧怕困难,你就不会胜利。

正十七边形的证明方法

正十七边形的尺规作图存在之证明:

设正17边形中心角为a,则17a=360度,即16a=360度-a

故sin16a=-sina,而

sin16a=2sin8acos8a=4sin4acos4acos8a=16sinacosacos2acos4acos8a

因sina不等于0,两边除之有:

16cosacos2acos4acos8a=-1

又由2cosacos2a=cosa+cos3a等,有

2(cosa+cos2a+…+cos8a)=-1

注意到 cos15a=cos2a,cos12a=cos5a,令

x=cosa+cos2a+cos4a+cos8№a

y=cos3a+cos5a+cos6a+cos7a

有:

x+y=-1/2

又xy=(cosa+cos2a+cos4a+cos8a)(cos3a+cos5a+cos6a+cos7a)

=1/2(cos2a+cos4a+cos4a+cos6a+…+cosa+cos15a)

经计算知xy=-1

又有

x=(-1+根号17)/4,y=(-1-根号17)/4

其次再设:x1=cosa+cos4a,x2=cos2a+cos8a

y1=cos3a+cos5a,y2=cos6a+cos7a

故有x1+x2=(-1+根号17)/4

y1+y2=(-1-根号17)/4

最后,由cosa+cos4a=x1,cosacos4a=(y1)/2

可求cosa之表达式,它是数的加减乘除平方根的组合, 故正17边形可用尺规作出

正十七边形尺规作图.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
    ×
    二维码
    × 游客快捷下载通道(下载后可以自由复制和排版)
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
    × 常见问题(客服时间:周一到周五 9:30-18:00)