J.Guo,M.Xu/AppliedThermalEngineering36(2012)227e235
Table2
Tubeouterdiametersandthecorrespondingtubepitch.do(mm)pt(mm)
1013.4
1216
1419
1622
1925
2026
2228
2532
3038
3240
3544
3848
4557
5064
5570
231
5772
(2)Thewholenumberofheatexchangetubes,n,rangingfrom50
to550;
(3)Theratioofthebaf espacingtotheshellinnerdiameter,Bs,
variesbetween0.2and1.0;
(4)Thecentralangleofbaf ecutq,rangingfrom1.8546to2.9413
inradian.
(5)Theoutlettemperatureofcold uid,rangingfrom313.15Kto
343.15K.Theconstraintconditionsfortheheatexchangerdesignare:(1)Length-diameterratioisbetween6and10;(2)Thebaf espacingisgreaterthan50mm;
(3)Thetube-sidepressuredropislessthan5Â104Pa;
(4)
Theshell-sidepressuredropislessthan5Â104Pa[27,28].
Thisoptimizationproblemformulatedabovewillbesolvedbythegeneticalgorithm.Thereasonforustoutilizethegeneticalgorithmisexplainedinthefollowing.
Thetraditionalapproachestosolvingtheoptimizationproblemsrequiretheinformationofthegradientsofobjectivefunctionsandsufferfromgettingtrappedatthelocaloptimum.Thus,theycan’tensurethattheglobaloptimalsolutionisachievable[29].Althoughdirectsearchmethoddoesnotrequireanyinformationaboutthegradientoftheobjectivefunction,itdependsheavilyontheinitialpoint,andfrequentlypointstolocaloptimumunlesstheobjectivefunctionisunimodal[30,31].Thegeneticalgorithmstartsthesearchfromapopulationofpoints;thedependenceofthismethodontheinitialpointisnotasstrongasdirectsearchmethod.Furthermore,itprovidesahighlevelofrobustnessbysimulatingnature’sadaptationintheevolutionprocess[30].More
Fig.3.Flowchartofgenetic
algorithm.
importantly,thegeneticalgorithmhasverystrongcapabilityto ndtheglobaloptimum[32].Therefore,thegeneticalgorithm[33]isemployedtosearchthesolutionoftheoptimizationproblemoftheheatexchangerdesign.Theinitialgenerationwhichsatis estheconstraintconditionsisrandomlygenerated.
Inthegeneticalgorithmmethodametriccalled tnessfunctionis rstde nedthatallowseachpotentialsolution(individual)tobequantitativelyevaluated.Theparametersarestructuredintheformof oatpoint.Afterarandominitialpopulationintherangesofdesignvariablesisgenerated,thealgorithmcreatesasequenceofnewgenerationsiterativelyuntilthestoppingcriterionismet.Inthisprocess,offspringaregeneratedbymergingtwoindividualsincurrentgenerationwithacrossoveroperator,orbymodifyingachromosomewithamutationoperator.Anewgenerationisformedbysomeparentsandoffspringbasedon tnessvalues,thepopulationsizeiskeptinvariantbyeliminatingtheinferiorones.Thechromosomeswithhigher tnessvalueshavehigherproba-bilitiestosurvive;thisensurestheconvergencetoabestindividualaftercertainnumberofgenerations,whichprobablyrepresentstheoptimalsolutionofthegivenproblem[34].The owchartofthegeneticalgorithmisshowninFig.3.Thesizeofinitialpopulationandthemaximumgenerationaresetto40and500,respectively.
Thevariationofthebestindividuals’ tnessvalueforsomegenerationvs.thenumberofgenerationsisdepictedinFig.4.Itisclearthattheentransydissipationnumbersduetoheatconductionand uidfrictionsharplydecline rstly,andthenalmostkeepconstantbeyondthe50thgeneration.FromFig.4onecanseethatthegeneticalgorithmhasveryhighef ciencyatsearchingtheglobaloptimalsolution.Therefore,themaximumgenerationnumberwhichissetto500inthepresentworkisenoughtogettheglobaloptimalsolution.Fig.5illustratesthevariationsoftheexchangereffectivenessandpumpingpowerwiththetotalentransydissipationnumber.Obviously,withdecreasingthetotalentransydissipationnumber,theexchangereffectivenessapprox-imatelyincreaseslinearly,whilethepumpingpowerdeclinessharply.Therefore,throughtheoptimizationprocess,theperfor-manceofheatexchangerhasbeenimprovedsubstantially.Inordertofurtherdemonstratetheadvantagesofthesingle-objectiveoptimizationdesignunder xedheatloadcondition,thecompar-isonbetweenarandomlygeneratedinitialdesignandtheoptimal
Fig.4.ThevariationsofG*DTandG*DPversusgenerations.