Data dependences, which relate statements that compute data values to statements that use those values, are useful for automating a variety of program-comprehension-related activities, such as reverse engineering, impact analysis, and debugging. Unfortunat
evaluatedthee ectsoftheprecisionofthepointeranalysisonsubsequentanalyses,suchasthecomputationofdef-useassociations(e.g.[25])andprogramslicing(e.g.[5,16,22]).Noneofthatresearch,however,distinguishesdef-useassociationsbasedonthetypesofde nitions,uses,anddef-useassociations—theyviewuniformlyeachdef-useassociationthatarisesinthepresenceofpointers.
Tonellaandcolleagues[26]analyzethee ectsoftheprecisionofthereaching-de nitioncomputationondef-useassociations,buttheydonotconsiderhowsuchprecisiona ectstheclassi cationofdef-useassociations.
Otherresearchers(e.g.[8,11])haveinvestigatedvariouswaystoreducethesizeofslices.However,theyhavenotconsideredclassifyingdatadependencesandcomputingslicesbasedondi erenttypesofdatadependencesasameansofreducingthesizeofslices.
6SummaryandFutureWork
Inthispaper,wepresentedatechniqueforcomputingandclassifyingdatadependencesinprogramsthatusepointers.Theclassi cationthatweproposeis nergrainedwithrespecttopreviouslypresentedclassi- cations,andallowsforapartitioningofdatadependencesinto24sets,basedontheir“strength.”Wealsopresentedthe rstsetofexperimentalresultsthatillustratesthedistributionofdatadependencesforasetofCsubjects.Althoughwecannotdrawanyconclusiveinference,thedatagatheredsofarshowtrendsthatareworthfurtherinvestigation.
Weillustratedapotentialapplicationoftheproposedclassi cationforprogramslicing.Ourslicingtechniqueletstheuser rstfocusonasmaller,thuseasiertounderstand,subsetoftheprogram,andthenconsiderincreasinglybiggerpartsofthecode.Wehavealsopresentedacasestudy,forwhichtheadditionof“weak”datadependencescausedonlyasmallgrowthofthesizeoftheslices,butisolatedandidenti edsubtledatadependenceswithintheprogram.
Wewillconductfurtherempiricalstudiestoevaluateboththedistributionofthedatadependencesandthee ectivenessoftheincrementalslicingtechnique.Ourfutureworkalsoincludestheextensionsofourprototypetouseadi erent,moree cient,kindofaliasanalysis.Thisimprovementwillallowus(1)toperformexperimentsonsubjectsofbiggersize,and(2)tostudytherelationbetweenthedistributionofdatadependencesandtheprecisionoftheunderlyingaliasanalysis.Wealsoplantoperformastudyofthesourcecodeofthesubjectstryingtoidentifypatternsinthatcodethatcancausespeci ctypesofdatadependences.Weareconvincedthatsuchpatternscouldbeofgreathelptotuneanalysisalgorithmsandprovideguidelinesfortheprogrammers.
Acknowledgments
ThisworkwassupportedinpartbyagrantfromBoeingCommercialAirplanestoGeorgiaTech,byNationalScienceFoundationawardsCCR-9707792,CCR-9988294,andCCR-0096321toGeorgiaTech,andbytheStateofGeorgiatoGeorgiaTechundertheYamacrawMission.