手机版

Forecasting Financial Time Series with Support Vector Machin(5)

发布时间:2021-06-05   来源:未知    
字号:

Fig.4.Thesegraphsshowsthedependenceofthepredictiononthesizeofthetimeslotusedeachtimeforpredictionandtraining:Theusedkernelfunctionsarefromlefttoright:DTW,LCSSglobal,andLCSSlocal.Theroundmarksinthediagramdenotetheresultswithatrainingsetof75periods,whereassquareandtriangularmarksshowtheresultsfor150and300periods.

ingdynamickernelfunctions,itispossibletouseawholerangeoftheprecedingseriesandanalyzeitasawholewiththeSVM’skernel.Aswecouldshow,thisapproachsigni cantlyincreasesthepredictionaccuracyandreliablyperformsbetterthanastandardnaiveforecast.

Forreal-worldexperimentsandapplicationsofthedevel-opedsystem,aninterfacetothetechnicalanalysissoftwareInvestox[46]wascreated(seeFig.5).Usingthisapplication,itbecomesnotonlypossibletoverifytheresultsonhistoricaldatausingavirtualbroker,butalsotoapplythesystemdirectlytocurrentdatainputsinaconstantlyevolvingmarketenvironment(seealso[47]).

Inourfutureresearch,theperformanceofthedevelopedsystemwillbeexaminedindifferenttradingconstellations.Contrarytotheworkonend-of-daydata,theperformanceofthetechniqueisalsohighenoughtouseitintheareaofintra-dayforecasting.Thisinvolvespredictionsinintervalsofonlyseveralminutes,ifnotjustinseconds’intervals.Inthisenvironmentofhighuncertaintyandconstanttrendshift,verydifferentrequirementsmayapply.Ontheotherhand,itisalsopossibletonotonlyusetheinputofonepre-processedtimeseries,buttocombinedifferentmarketpricesforpredictingacertainvalue.Thiskindofinter-marketanalysismayhavethepotentialtodetect uctuationsinaspeci cpriceandprematurelyratetheresultingin uenceonthetargetvalue.

REFERENCES

[1]S.Nison,Japanesecandlestickchartingtechniques:acontemporary

guidetotheancientinvestmenttechniquesforthefareast.PrenticeHallInternational,1991.

[2]R.PrechterandA.Frost,Elliottwaveprinciple:keytomarketbehavior.

JohnWiley&Sons,1978.

[3]R.Freedman,Introductionto nancialtechnology.Elsevier,2006.[4]L.Stevens,Essentialtechnicalanalysis:toolsandtechniquestospot

markettrends.JohnWiley&Sons,2002.

[5]E.Fama,“Ef cientcapitalmarkets:areviewoftheoryandempirical

work,”JournalofFinance,vol.25,pp.383–417,1970.[6]EurexFrankfurtAG,“Eurex.”[Online].Available:

[7]J.Hull,Options,Futures,andOtherDerivatives.Prentice-Hall,2006.

[8]S.-i.WuandR.-P.Lu,“Combiningarti cialneuralnetworksand

statisticsforstock-marketforecasting,”inProceedingsofthe1993ACMConferenceonComputerScience,1993,pp.257–264.

[9]C.-M.KuanandT.Liu,“Forecastingexchangeratesusingfeedfor-wardandrecurrentneuralnetworks,”JournalofAppliedEconometrics,vol.10,pp.347–64,1995.

[10]J.Elman,“Findingstructureintime,”CognitiveScience,vol.14,pp.

179–211,1990.

[11]F.TayandL.Cao,“Modi edsupportvectormachinesin nancialtime

seriesforecasting,”Neurocomputing,vol.48,pp.847–861,2002.

[12]L.CaoandF.Tay,“Supportvectormachinewithadaptiveparameters

in nancialtimeseriesforecasting,”IEEETransactionsonNeuralNetworks,vol.14,pp.1506–1518,2003.

[13]V.Vapnik,Thenatureofstatisticallearningtheory.Springer,1995.[14]K.-j.Kim,“Financialtimeseriesforecastingusingsupportvector

machines,”Neurocomputing,vol.55,pp.307–319,2003.

[15]C.J.C.Burges,“Atutorialonsupportvectormachinesforpattern

recognition,”DataMiningandKnowledgeDiscovery,vol.2,no.2,pp.121–167,1998.

[16]V.N.Vapnik,“Anoverviewofstatisticallearningtheory,”IEEETrans-actionsonNeuralNetworks,vol.10,no.5,pp.988–999,1999.[17]B.Sch¨olkopf,C.J.C.Burges,andA.J.Smola,AdvancesinKernel

Methods.Cambridge:MITPress,1998,ch.1.[18]P.-H.Chen,C.-J.Lin,andB.Sch¨olkopf,“Atutorialonν-supportvector

machines,”AppliedStochasticModelsinBusinessandIndustry,vol.21,pp.111–136,2005.

[19]V.WanandS.Renals,“Evaluationofkernelmethodsforspeaker

veri cationandidenti cation,”inIEEEInternationalConferenceonAcoustics,SpeechandSignalProcessing,May2002,pp.669–672.[20]S.Rueping,“SVMkernelsfortimeseriesanalysis,”inLLWA01–

TagungsbandderGI-Workshop-WocheLernen–Lehren–Wissen–Adaptivit¨at,Oct.2001,pp.43–50.

[21]V.WanandW.M.Campbell,“Supportvectormachinesforspeaker

veri cationandidenti cation,”inIEEEInternationalWorkshoponNeuralNetworksforSignalProcessing,Dec.2000,pp.775–784.

[22]P.ClarksonandP.J.Moreno,“Ontheuseofsupportvectormachines

forphoneticclassi cation,”inInternationalConferenceonAcoustics,SpeechandSignalProcessing,vol.2,1999,pp.585–588.

[23]J.MarquesandP.J.Moreno,“Astudyofmusicalinstrumentclassi ca-tionusinggaussianmixturemodelsandsupportvectormachines,”HPLabsTechnicalReports,Tech.Rep.CRL-99-4,1999.

[24]B.HaasdonkandD.Keysers,“Tangentdistancekernelsforsupportvec-tormachines,”in16thInternationalConferenceonPatternRecognition(ICPR),vol.2,2002,pp.864–868.

[25]S.ChakrabarttyandY.Deng,“Dynamictimealignmentinsupportvector

machinesforrecognitionsystems,”InternalReport,TheJohnsHopkinsUniversity,Baltimore,2001.

[26]H.Shimodaira,K.ichiNoma,M.Nakai,andS.Sagayama,“Dynamic

time-alignmentkernelinsupportvectormachine,”inNeuralInformationProcessing(NIPS2001),2001,pp.921–928.

Forecasting Financial Time Series with Support Vector Machin(5).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)