Fig.4.Thesegraphsshowsthedependenceofthepredictiononthesizeofthetimeslotusedeachtimeforpredictionandtraining:Theusedkernelfunctionsarefromlefttoright:DTW,LCSSglobal,andLCSSlocal.Theroundmarksinthediagramdenotetheresultswithatrainingsetof75periods,whereassquareandtriangularmarksshowtheresultsfor150and300periods.
ingdynamickernelfunctions,itispossibletouseawholerangeoftheprecedingseriesandanalyzeitasawholewiththeSVM’skernel.Aswecouldshow,thisapproachsigni cantlyincreasesthepredictionaccuracyandreliablyperformsbetterthanastandardnaiveforecast.
Forreal-worldexperimentsandapplicationsofthedevel-opedsystem,aninterfacetothetechnicalanalysissoftwareInvestox[46]wascreated(seeFig.5).Usingthisapplication,itbecomesnotonlypossibletoverifytheresultsonhistoricaldatausingavirtualbroker,butalsotoapplythesystemdirectlytocurrentdatainputsinaconstantlyevolvingmarketenvironment(seealso[47]).
Inourfutureresearch,theperformanceofthedevelopedsystemwillbeexaminedindifferenttradingconstellations.Contrarytotheworkonend-of-daydata,theperformanceofthetechniqueisalsohighenoughtouseitintheareaofintra-dayforecasting.Thisinvolvespredictionsinintervalsofonlyseveralminutes,ifnotjustinseconds’intervals.Inthisenvironmentofhighuncertaintyandconstanttrendshift,verydifferentrequirementsmayapply.Ontheotherhand,itisalsopossibletonotonlyusetheinputofonepre-processedtimeseries,buttocombinedifferentmarketpricesforpredictingacertainvalue.Thiskindofinter-marketanalysismayhavethepotentialtodetect uctuationsinaspeci cpriceandprematurelyratetheresultingin uenceonthetargetvalue.
REFERENCES
[1]S.Nison,Japanesecandlestickchartingtechniques:acontemporary
guidetotheancientinvestmenttechniquesforthefareast.PrenticeHallInternational,1991.
[2]R.PrechterandA.Frost,Elliottwaveprinciple:keytomarketbehavior.
JohnWiley&Sons,1978.
[3]R.Freedman,Introductionto nancialtechnology.Elsevier,2006.[4]L.Stevens,Essentialtechnicalanalysis:toolsandtechniquestospot
markettrends.JohnWiley&Sons,2002.
[5]E.Fama,“Ef cientcapitalmarkets:areviewoftheoryandempirical
work,”JournalofFinance,vol.25,pp.383–417,1970.[6]EurexFrankfurtAG,“Eurex.”[Online].Available:
[7]J.Hull,Options,Futures,andOtherDerivatives.Prentice-Hall,2006.
[8]S.-i.WuandR.-P.Lu,“Combiningarti cialneuralnetworksand
statisticsforstock-marketforecasting,”inProceedingsofthe1993ACMConferenceonComputerScience,1993,pp.257–264.
[9]C.-M.KuanandT.Liu,“Forecastingexchangeratesusingfeedfor-wardandrecurrentneuralnetworks,”JournalofAppliedEconometrics,vol.10,pp.347–64,1995.
[10]J.Elman,“Findingstructureintime,”CognitiveScience,vol.14,pp.
179–211,1990.
[11]F.TayandL.Cao,“Modi edsupportvectormachinesin nancialtime
seriesforecasting,”Neurocomputing,vol.48,pp.847–861,2002.
[12]L.CaoandF.Tay,“Supportvectormachinewithadaptiveparameters
in nancialtimeseriesforecasting,”IEEETransactionsonNeuralNetworks,vol.14,pp.1506–1518,2003.
[13]V.Vapnik,Thenatureofstatisticallearningtheory.Springer,1995.[14]K.-j.Kim,“Financialtimeseriesforecastingusingsupportvector
machines,”Neurocomputing,vol.55,pp.307–319,2003.
[15]C.J.C.Burges,“Atutorialonsupportvectormachinesforpattern
recognition,”DataMiningandKnowledgeDiscovery,vol.2,no.2,pp.121–167,1998.
[16]V.N.Vapnik,“Anoverviewofstatisticallearningtheory,”IEEETrans-actionsonNeuralNetworks,vol.10,no.5,pp.988–999,1999.[17]B.Sch¨olkopf,C.J.C.Burges,andA.J.Smola,AdvancesinKernel
Methods.Cambridge:MITPress,1998,ch.1.[18]P.-H.Chen,C.-J.Lin,andB.Sch¨olkopf,“Atutorialonν-supportvector
machines,”AppliedStochasticModelsinBusinessandIndustry,vol.21,pp.111–136,2005.
[19]V.WanandS.Renals,“Evaluationofkernelmethodsforspeaker
veri cationandidenti cation,”inIEEEInternationalConferenceonAcoustics,SpeechandSignalProcessing,May2002,pp.669–672.[20]S.Rueping,“SVMkernelsfortimeseriesanalysis,”inLLWA01–
TagungsbandderGI-Workshop-WocheLernen–Lehren–Wissen–Adaptivit¨at,Oct.2001,pp.43–50.
[21]V.WanandW.M.Campbell,“Supportvectormachinesforspeaker
veri cationandidenti cation,”inIEEEInternationalWorkshoponNeuralNetworksforSignalProcessing,Dec.2000,pp.775–784.
[22]P.ClarksonandP.J.Moreno,“Ontheuseofsupportvectormachines
forphoneticclassi cation,”inInternationalConferenceonAcoustics,SpeechandSignalProcessing,vol.2,1999,pp.585–588.
[23]J.MarquesandP.J.Moreno,“Astudyofmusicalinstrumentclassi ca-tionusinggaussianmixturemodelsandsupportvectormachines,”HPLabsTechnicalReports,Tech.Rep.CRL-99-4,1999.
[24]B.HaasdonkandD.Keysers,“Tangentdistancekernelsforsupportvec-tormachines,”in16thInternationalConferenceonPatternRecognition(ICPR),vol.2,2002,pp.864–868.
[25]S.ChakrabarttyandY.Deng,“Dynamictimealignmentinsupportvector
machinesforrecognitionsystems,”InternalReport,TheJohnsHopkinsUniversity,Baltimore,2001.
[26]H.Shimodaira,K.ichiNoma,M.Nakai,andS.Sagayama,“Dynamic
time-alignmentkernelinsupportvectormachine,”inNeuralInformationProcessing(NIPS2001),2001,pp.921–928.