解法二(I)证明 由题设知OA⊥OO1,OB⊥OO1,所以∠AOB是所折成的直二面角的平面角,即OA⊥OB. 从而AO⊥平面OBCO1,OC是AC在面OBCO1内的射影.
因为
,
所以∠OO1B=60°,∠O1OC=30°,从而OC⊥BO1 由三垂线定理得AC⊥BO1
.
(II)解 由(I)AC⊥BO1,OC⊥BO1,知BO1⊥平面AOC.
设OC∩O1B=E,过点E作EF⊥AC于F,连结O1F(如图4),则EF是O1F在平面AOC 内的射影,由三垂线定理得O1F⊥AC. 所以∠O1FE是二面角O—AC—O1的平面角.
由题设知OA=3,OO1=,O1C=1,
所以,
从而, 又O1E=OO1·sin30°=
平面ABC=,∴MN∥
,
⑴显然可得MN∥平面ABC,∵平面MNC
⑵∵PC⊥平面ABC,∴平面PAC⊥平面ABC,作MQ⊥AC,则MQ⊥平面ABC,
作QD⊥于D,则MD⊥,MD的长即为M到的距离
在Rt△ACB中,可求得∴
,
,于是
,又,∠QCD=30?,