LDPC码
IEEECOMMUNICATIONSLETTERS,VOL.9,NO.9,SEPTEMBER2005823
ACombiningMethodofQuasi-CyclicLDPCCodesbytheChineseRemainderTheorem
SehoMyungandKyeongcheolYang,Member,IEEE
Abstract—Inthispaperweproposeamethodofconstructingquasi-cycliclow-densityparity-check(QC-LDPC)codesoflargelengthbycombiningQC-LDPCcodesofsmalllengthastheircomponentcodes,viatheChineseRemainderTheorem.ThegirthoftheQC-LDPCcodesobtainedbytheproposedmethodisalwayslargerthanorequaltothatofeachcomponentcode.Byapplyingthemethodtoarraycodes,wepresentafamilyofhigh-rateregularQC-LDPCcodeswithno4-cycles.SimulationresultsshowthattheyhavealmostthesameperformanceasrandomregularLDPCcodes.
IndexTerms—ChineseRemainderTheorem,circulantpermu-tationmatrix,low-densityparity-check(LDPC)codes,quasi-cyclic.
Theoutlineofthepaperisasfollows.InSectionII,wereviewQC-LDPCcodesandde nenotationforourpresenta-tion.WeproposeamethodtoextendQC-LDPCcodesbasedontheCRTinSectionIIIandpresentafamilyofQC-LDPCcodeswithno4-cyclesbyapplyingtheproposedmethodtoarraycodesinSectionIV.Finally,wegiveconcludingremarksinSectionV.
II.QUASI-CYCLICLDPCCODES
AQC-LDPCcodeischaracterizedbytheparity-checkmatrixwhichconsistsofsmallsquareblockswhicharethezeromatrixorcirculantpermutationmatrices.LetCbetheQC-LDPCcodesoflengthnL,whoseparity-checkmatrixisgivenby
a P11Pa12···Pa1(n 1)Pa1n
Pa21Pa22···Pa2(n 1)Pa2n
(1)H= ........ ..···..
Pam1
Pam2
···
Pam(n 1)
Pamn
whereP=(Pij)istheL×Lpermutationmatrixde nedby
1ifi+1≡jmodL
(2)Pij=
0otherwiseandaij∈{0,1,...,L 1,∞}.Forsimplenotation,wedenotethezeromatrixbyP∞.
Forourconvenienceweintroducesomede nitions.
1)MotherMatrix:Them×nbinarymatrixM(H)canbeuniquelyobtainedbyreplacingzeromatricesandcir-culantpermutationmatricesby‘0’and‘1’,respectively,fromtheparity-checkmatrixHofaQC-LDPCcodein(1).ThenM(H)iscalledthemothermatrixofH.
2)ExponentMatrix:TheexponentmatrixE(H)ofHin(1)isde nedby
a11a12···a1(n 1)a1n
.......E(H)= ...···.. .(3)
am1
am2
···
am(n 1)
amn
NotethatithasthesamesizeasthemothermatrixofH.
3)ExponentCoupling:Aparity-checkmatrixHcanbeobtainedbycombininganexponentmatrixEandthecirculantpermutationmatrixP.Asanexample,Hin(1)willbeexpressedasH=E PwhereEisgivenbyE(H)in(3).Thisprocedureiscalledanexponentcoupling.
4)Block-Cycle:Ifthereisacyclegeneratedby1’sinM(H),itiscalledablock-cycle.
I.INTRODUCTION
L
OW-DENSITYparity-check(LDPC)codes rstdiscov-eredbyGallager[3]havearemarkableperformancewithiterativedecodingthatisveryclosetotheShannonlimitoveradditivewhiteGaussiannoise(AWGN)channels[5],[6].MostmethodsfordesigninggoodLDPCcodesarebasedonrandomconstruction,butalgebraicallystructuredLDPCcodesmaybeneededforimplementationpurposes.InthecaseofrandomLDPCcodesoflargecodelength,asigni cantamountofmemoryisneededtostoretheirparity-checkmatrices.Also,itishardtoaccessthememoryandencodedataef ciently.Quasi-cyclicLDPC(QC-LDPC)codesmaybeagoodcandidatetosolvethememoryproblemduetotheiralgebraicstructures.TherequiredmemoryforstoringQC-LDPCcodescanbereducedbyafactor1/L,whenL×Lcirculantper-mutationmatricesorthezeromatrixareemployed.Recently,severalcodingtheoristsproposedsomeclassesofQC-LDPCcodesbasedoncirculantpermutationmatricesandanalyzedtheirproperties[1],[2],[4],[8].ThesecodesperformquitewellcomparedtorandomLDPCcodes.
ThemaincontributionofthepaperistoproposeamethodforconstructingQC-LDPCcodesoflargelengthfromQC-LDPCcodesofsmalllengthusingtheChineseRemainderTheorem(CRT).Byapplyingthemethodtoarraycodes,wepresentafamilyofhigh-rateregularQC-LDPCcodeswithno4-cycles.
ManuscriptreceivedMarch2,2005.TheassociateeditorcoordinatingthereviewofthisletterandapprovingitforpublicationwasProf.MarcFossorier.ThisworkwassupportedinpartbytheCenterforBroadbandOFDMMobileAccess(BrOMA)atPOSTECH,supportedbytheITRCprogramoftheKoreanMinistryofInformationandCommunication(MIC)underthesupervisionoftheInstituteofInformationTechnologyAssessment(IITA).
TheauthorsarewiththeDepartmentofElectronicsandElectricalEngi-neering,PohangUniversityofScienceandTechnology(POSTECH),Pohang,Korea(e-mail:kcyang@postech.ac.kr).
DigitalObjectIdenti er10.1109/LCOMM.2005.09030.
c2005IEEE1089-7798/05$20.00