LDPC码
8245)ExponentChain:Ablock-cycleoflength2linM(H)canberepresentedasanexponentchainasfollows:
Pa1→···→Pa2l→Pa1
or
(a1,···,a2l,a1).
HerebothPaiandPai+1arelocatedineitherthesame
columnablockorthesamerowblockofH,andbothandPi+2arelocatedinthedistinctcolumnandrowblocks.Sincethecyclesofshortlengthmaydegradetheperfor-manceofLDPCcodes,itiscriticaltounderstandtheirstruc-ture.Duetothespecialstructureoftheirparity-checkmatricesforQC-LDPCcodes,thecyclesmaybeeasilyanalyzedinanalgebraicway.Thefollowingpropositionwas rstpresentedbyFossorierin[2].
Proposition1([2]):LetPa1→Pa2→···→Pa2lPa→1betheexponentchaincorrespondingtoa2l-block-cycle.Ifristheleastpositiveintegersuchthat
2lr·
( 1)i 1ai≡0modL,
(4)
i=1
thentheblock-cycleleadstoacycleoflength2lr.
Itiseasilycheckedthatr|L,thatis,rdividesLduetoits
choiceinProposition1.
BININGOFQC-LDPCCODESBYTHECRTInthissectionweintroduceasimplemethodtoobtaintheexponentmatrixforaQC-LDPCcodeoflargelengthbycombiningtheexponentmatricesforgivenQC-LDPCcodesofsmallerlength.
Fork=1,2,...,s,letCkbeaQC-LDPCcodewhoseparity-checkmatrixHkisanmLandmotherk×nLmatriceskbinarymatrix.ThecorrespondingexponentaregivenbyE(HM(Hk)=(akij)andM(Hk)L,respectively.Assumethatallk)arethesameandgcd(wewishtoconstructE(Hl,L)andk)=1foralll,k(l=k).Now,M(H)foraQC-LDPCcodeCwhoseparity-checkmatrixHisanmL×nLmatrix.TheideacomesfromtheChineseRemainderTheorem(CRT)[7]inthefollowing.
CombiningbytheCRT
Step1)Ifak
ij=∞for1≤k≤s,then
a sij=
akijbkL
k
modL
k=1
where
L=L1L2···Ls,L L
k=
k
andbkL k≡1modLk.Otherwise,a StepE(H2))=The(aexponentmatrixE(H)forijH=∞is.
de nedby
Step3)Theijparity-check).
matrixHisobtainedbyexpo-nentcouplingofE(H)andP,i.e.,H=E(H) PwherePistheL×Lcirculantpermutationmatrixde nedin(2).
Forsimplicity,considertwoQC-LDPCcodesCL(H1andCsuchthatgcd(2
1,L2)=1,E1)=(aij),E(H2)=(bij)
IEEECOMMUNICATIONSLETTERS,VOL.9,NO.9,SEPTEMBER2005
andM(H1)=M(H2)in(1).BythecombiningbasedontheCRT,theexponentmatrixE(H)=(cij)isgivenby
cij≡aijA1L2+bijA2L1
modL1L2.
(5)
whereA1andAmodL2aretwointegerssuchthatAmodL1L2≡11andA2Lobtained1≡1byexponent2.Thentheparity-checkmatrixHcanbecouplingofE(H)andtheL1L2×L1L2circulantpermutationmatrixPin(2).SinceM(H1)=M(H2)=M(H),a2l-block-cycleinthemothermatrixcanberepresentedbythechains(a(cbb1,a2,...,a2l,a1),1,2,...,b2l,b1),and(c1,c2,...,c2Hl,c),1)respectively.whereaHi,bTheseiandchainsicomefromE(arecloselyrelated1),E(Hin2)andE(thefollowing.
Theorem2:Ifr1,r2,andraretheleastpositiveintegerssuchthat
r
2l1·( 1)i 1ai≡0modL1,(6)i=1
r 2l2·( 1)i 1bi
≡0modL2,(7)i=1r·
2l( 1)i 1ci
≡0modL1L2,
(8)
i=1
thentheblock-cycleleadstoacycleoflength2lr,andacycleoflength2lrinH1,acycle
oflength2lr21,HFurthermore,r=r2andH,respectively.Proof.ByProposition1,itiseasily1r2.
checkedthattheblock-cycleleadstoacycleoflength2lr1,acycleoflength2lrandacycleoflength2lrinH,respectively.2,Therefore,itsuf cestoshowthat1,Hr=2andHrcanbe1ramongtheexponentsin(5),(8)expressed2.Fromtherelationas
rA 2l1L2·( 1)i 1
arA
2li+2L1·( 1)i 1bi≡0
modL1L2.
i=1
i=1
Thisequationcanbedividedintotwoparts:
rA 2l1L2·( 1)i 1ai≡0modL1,i=1rA 2l2L1·
( 1)i 1bi≡0
modL2.
i=1
SinceArand1L2r≡1modL1andA2L1,r≡1modL2,wehave
r1|2|r.Notethatgcd(r12)=1sincer1|L1,r2|L2andgcd(L1,L2)=1.Thereforer1r2|r.Ontheotherhand,wehave
2l 2 r 1c
l1r2·( 1)ii=r2A1L2r1( 1)i 1ai
i=1
i=1
2l
+r1A2
L1r2
( 1)i 1bi
≡0modLi=1
1L2
whichimpliesr=r1r2.
Theorem2impliesthatifweapplytheexponentcouplingtoE(H)andtheLin(2),thenwecan1L2obtain×L1La2circulantpermutationmatrixPnewQC-LDPCcodeCwith