LDPC码
MYUNGandYANG:ACOMBININGMETHODOFQUASI-CYCLICLDPCCODESBYTHECHINESEREMAINDERTHEOREM
825
Fig.1.PerformanceofsomeregularQC-LDPCcodesconstructedwiththeexponentcombiningbytheCRT.
girthlargerthanorequaltothoseofC1andC2.Theorem2canbedirectlyextendedtothegeneralcasewithmorethantwoQC-LDPCcodes.
IV.AFAMILYOFQC-LDPCCODESWITHNO4-CYCLESThecombiningbytheCRTcanbeusedtoconstructalargeQC-LDPCcodewithno4-cyclesfromsmallQC-LDPCcodesascomponentcodes.Here,onlyarraycodeswillbeconsideredascomponentcodes,eventhoughotherQC-LDPCcodescanbenaturallyemployed.
TheexponentmatrixEofanarraycodeC(p,m)isde nedbyEij=(i 1)(j 1)for1≤i≤mand1≤j≤p[1].Herepisprimeandmisapositiveintegersuchthatm≤p.Theparity-checkmatrixH(p,m)ofC(p,m)canbeobtainedbyexponentcouplingofEandthep×pcirculantpermutationmatrixPin(2).Itiswell-knownthatthegirthofC(p,m)is6[1],[9].
Theorem3:LetC(p,m)bethearraycodewithparity-checkmatrixH(p,m)foraprimepandapositiveintegerm≤p.Fori=1,2,letpibeaprime(p1=p2)andE(Hi)bethem×p1p2exponentmatrixofHi,respectively,where
H1=[H
(p1,m)H(p1,m)···H(p1,m)]p ,
2times
H2=[H
(p2,m)H(p2,pm)···H(p2,m)].times
1LetEbethem×p1p2matrixoverZE(Hp1p2obtainedby
combiningE(Hmp1)and2)basedontheCRTandletbethe2
H
ofEandthe1p2×p2p1p2matrixobtainedbyexponentcoupling1p2×p1p2circulantpermutationmatrixin(2).ThentheQC-LDPCcodewithparity-checkmatrixHhasno4-cycles.
Proof.Letr1andr2betheleastpositiveintegerssatisfying(6)and(7)for4-block-cyclesinHp1andH2,respectively.Sincethe(i+j11)thandthe(i+j2p1)thcolumnblocksin
H1arethesameforjareno1=j4-cycles2,thereexist4-cyclesbetweenthem.But,therebetweenthe(i1+j1p1)thandthe(i2+jotherhand,2pthe1)thcolumnblocksinH(i+j1fori1=icolumn2.OntheblocksinH1p1)thandthe(i+j2p1)th(jj2aredistinctsince(i+j.Therefore,there1p1) (i+jareno4-cycles2p1)=between1 2)pthe1=0modp(i+j21p1)thandthe(i+jandH2p1)thcolumnblocksinH2.Thisimpliesthatr1r2>1hasno4-cyclesbyTheorem2. ThemethodgiveninTheorem3cannotbedirectlyusedtoconstructlow-rateQC-LDPCcodesoflargelength,sincethenumberofrowblocksareconstant.However,itmaybepossibletoconstructlow-rateQC-LDPCcodeswithoutshortcyclesinasimilarway.NotethatthecombiningmethodbasedontheCRTcanbeappliedtoconstructingQC-LDPCcodes,regardlessofwhethertheyareregularornot.
Figure1showsthebiterrorrate(BER)andframeerrorrate(FER)performanceoftheshortenedQC-LDPCcodescon-structedbythecombiningmethodviatheCRToveranAWGNchannel.Here,(N,K,j)(p1,p2)denotes(codelength,infor-mationlength,columnweight)(arraycodesC(p1,j),C(p2,j)).Theyhavelittleperformancedegradationduetotheirrestrictedstructure,ascomparedwithrandomlyconstructedregularLDPCcodeswiththesameparameters.Inthecasethatthecolumnweightislargerthan3,therearenoseriouserror oorsatFER=10 4.
V.CONCLUDINGREMARKS
WediscussedhowtocombineQC-LDPCcodesofsmalllength,basedontheCRT.WeshowedthatthemethodcanbeusedforconstructingQC-LDPCcodeswithno4-cycles.Byapplyingthemethodtoarraycodesascomponentcodes,wepresentedafamilyofQC-LDPCcodeswithno4-cycles.ThisapproachcanbedirectlyextendedtootherQC-LDPCcodes.
REFERENCES
[1]J.L.Fan,“Arraycodesaslow-densityparity-checkcodes,”inProc.2nd
Int.Symp.TurboCodes,Brest,France,Sept.4-7,2000,pp.543-546.[2]M.P.C.Fossorier,“Quasi-cycliclowdensityparitycheckcodesfrom
circulantpermutationmatrices,”rm.Theory,vol.50,pp.1788-1794,Aug.2004.
[3]R.G.Gallager,“Low-densityparity-checkcodes,”rm.
Theory,vol.IT-8,pp.21-28,Jan.1962.
[4]J.-L.Kim,U.N.Peled,I.Perepelitsa,V.Pless,andS.Friedland,“Explicit
constructionoffamiliesofLDPCcodeswithno4-cycles,”rm.Theory,vol.50,pp.2378-2388,Oct.2004.
[5]D.J.C.MacKayandR.M.Neal,“NearShannonlimitperformanceof
low-densityparity-checkcodes,”Electron.Lett.,vol.32,pp.1645-1646,Aug.1996.
[6]T.J.Richardson,A.Shokrollahi,andR.Urbanke,“Designofcapacity-approachinglow-densityparity-checkcodes,”rm.The-ory,vol.47,pp.619-637,Feb.2001.
[7]K.H.Rosen,ElementaryNumberTheoryandItsApplications.Reading,
MA:Addison-Wesley,pp.322-324,2000.
[8]R.M.Tanner,D.Sridhara,T.Fuja,andD.J.Costello,Jr.,“LDPC
blockandconvolutionalcodesbasedoncirculantmatrices,”rm.Theory,vol.50,pp.2966-2984,Dec.2004.
[9]K.YangandT.Helleseth,“Ontheminimumdistanceofarraycodesas
LDPCcodes,”rm.Theory,vol.49,pp.3268-3271,Dec.2003.