浓度的公式
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
说了这么多,其实最常用的是用方程解浓度问题
比如两种不同浓度的溶液混合,最常用的公式形式是
甲溶液质量×浓度+乙溶液质量×浓度=总溶液质量×浓度
在小学奥数里面,浓度问题只需要知道三点:
1.溶质,溶剂,溶液分别是什么。
2.浓度如何计算,要知道是用溶质除以溶液。
3.学会把纯溶剂看成0%,纯溶质看成100%。
浓度问题的计算,小学奥数中只要求掌握十字交叉法就可以了。
简单写一下就是:
浓度1 浓度2
混合浓度
浓度2-混合浓度 混合浓度-浓度1
溶液质量1 溶液质量2
也就是说,把两种要混合的溶液浓度分别和混合后的浓度交叉相减,
得到的浓度差之比,就等于原来两种溶液质量之比。
要注意相减的时候,要用大的减小的。
百分数有两种不同的定义。
(1)分母是100的分数叫做百分数。这种定义着眼于形式,把百分数作为分数的一种特殊形式。
(2)表示一个数(比较数)是另一个数(标准数)的百分之几的数叫做百分数。这种定义着眼于应用,用来表示两个数的比。所以百分数又叫百分比或百分率。
百分数通常不写成分数形式,而采用符号“%”来表示,叫做百分号。
在第二种定义中,出现了比较数、标准数、分率(百分数),这三者的关系如下:
比较数÷标准数=分率(百分数),
标准数×分率=比较数,
比较数÷分率=标准数。
根据比较数、标准数、分率三者的关系,就可以解答许多与百分数有关的应用题。
例1 纺织厂的女工占全厂人数的80%,一车间的男工占全厂男工的25%。问:一车间的男工占全厂人数的百分之几?
分析与解:因为“女工占全厂人数的80%”,所以男工占全厂人数的1-80%=20%。
又因为“一车间的男工占全厂男工的25%”,所以一车间的男工占全厂人数的20%×25%=5%。
例2 学校去年春季植树500棵,成活率为85%,去年秋季植树的成活率为90%。已知去年春季比秋季多死了20棵树,那么去年学校共种活了多少棵树?
分析与解:去年春季种的树活了500×85%=425(棵)
,死了500-425=75(棵)。去年秋季种的树,死了75-20=55(棵),活了 55÷(1-90%)×90%=495(棵)。所以,去年学校共种活425+495=920(棵)。
例3 一次考试共有5道试题。做对第1,2,3,4,5题的人数分别占参加考试人数
的85%,95%,90%,75%,80%。如果做对三道或三道以上为及格,那么这次考试的及格率至少是多少?
分析与解:因为百分数的含义是部分量占总量的百分之几,所以不妨设总量即参加考试的人数为100。
由此得到做错第1题的有100×(1-85%)=15(人);
同理可得,做错第2,3,4,5题的分别有5,10,25,20人。
总共做错15+5+10+25+20=75(题)。
一人做错3道或3道以上为不及格,由75÷3=25(人),推知至多有25人不及格,也就是说至少有75人及格,及格率至少是75%。
例4 育红小学四年级学生比三年级学生多25%,五年级学生比四年级学生少10%,六年级学生比五年级学生多10%。如果六年级学生比三年级学生多38人,那么三至六年级共有多少名学生?
分析:以三年级学生人数为标准量,则四年级是三年级的125%,五年级是三年级的125%×(1-10%),六年级是三年级的125%×(1-10%)×(1+10%)。因为已知六年级比三年级多38人,所以可根据六年级的人数列方程。
解:设三年级有x名学生,根据六年级的人数可列方程:
x×125%×(1-10%)×(1+10%)=x+38,
x×125%×90%×110%=x+38,
1.2375x=x+38,
0.2375x=38,
x=160。
三年级有160名学生。
四年级有学生 160×125%=200(名)。
五年级有学生200×(1-10%)=180(名)。
六年级有学生 160+38=198(名)。
160+200+180+198=738(名)。
答:三至六年级共有学生738名。
在百分数应用题中有一类叫溶液配比问题。我们都知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。如果水的量不变,那么糖加得越多,糖水就越甜,也就是说,糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者重量的比值决定的,这个比值就叫糖水的含糖量或糖含量。类似地,酒精溶于水中,纯酒精与酒精溶液二者重量的比值就叫酒精含量。溶质、溶剂、溶液及溶质含量有如下基本关系:
溶液重量=溶质重量+溶剂重量,
溶质含量=溶质重量÷溶液重量,
溶液重量=溶质重量÷溶质含量,
溶质重量=溶液重量×溶质含量。
溶质含量通常用百分数表示。例如,10克白糖溶于90克水中,含糖量(溶
例5 有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?
分析与解:在600克含糖量为7%的糖水中,有糖(溶质)600×7%=42(克)。
设再加x克糖,可使其含糖量加大到10%。此时溶质有(42+x)克,溶液有(600+x)克
,根据溶质含量可得方程
需要再加入20克糖。
例6 仓库运来含水量为90%的一种水果100千克,一星期后再测,发现含水量降低到80%。现在这批水果的总重量是多少千克?
分析与解:可将水果分成“水”和“果”两部分。一开始,果重
100×(1-90%)=10(千克)。
一星期后含水量变为80%,“果”与“水”的比值为
因为“果”始终是10千克,可求出此时“水”的重量为
所以总重量是10+40=50(千克)。
练习9
1.某修路队修一条路,5天完成了全长的20%。照此计算,完成任务还需多少天?
2.服装厂一车间人数占全厂的25%,二车间人数比一车间少20%,三车间人数比二车间多30%。已知三车间有156人,全厂有多少人?
3.有三块地,第二块地的面积是第一块地的80%,第三块地的面积比第二块多20%,三块地共69公顷,求三块地各多少公顷。
4.某工厂四个季度的全勤率分别为90%,86%,92%,94%。问:全年全勤的人至少占百分之几?
5.有酒精含量为30%的酒精溶液若干,加了一定数量的水后稀释成酒精含量为
24%的溶液,如果再加入同样多的水,那么酒精含量将变为多少?
6.配制硫酸含量为20%的硫酸溶液1000克,需要用硫酸含量为18%和23%的硫酸溶液各多少克?
7.有一堆含水量14.5%的煤,经过一段时间的风干,含水量降为10%,现在这堆煤的重量是原来的百分之几?