Abstract — This paper proposes an admission control algorithm that enables the upcoming IEEE 802.11e contention based Enhanced Distributed Channel Access (EDCA) to provide quantitative bandwidth guarantees for Wireless Local Area Networks (WLANs), rather
CallAdmissionControlforIEEE802.11
ContentionAccessMechanism
DennisPongandTimMoors
SchoolofElectricalEngineeringandTelecommunications,TheUniversityofNewSouthWales,Australia
Email:dennisp@student.unsw.edu.auandt.moors@unsw.edu.au
Abstract—ThispaperproposesanadmissioncontrolalgorithmthatenablestheupcomingIEEE802.11econtentionbasedEn-hancedDistributedChannelAccess(EDCA)toprovidequanti-tativebandwidthguaranteesforWirelessLocalAreaNetworks(WLANs),ratherthanarelativeprioritizedservice.Thealgo-rithmestimatesthethroughputthat owswouldachieveifanew owwithcertainparameterswasadmitted,andsoindicateswhethersuchanew owcanbeadmittedwhilepreservingtheQualityofService(QoS)ofexisting ows.ThealgorithmdealswiththeEDCAparametersofminimumcontentionwindowsizeandtransmissionopportunityduration,andindicateswhatvaluesshouldbeusedfordifferent ows.Simulationresultscon rmtheaccuracyofthethroughputestimatesandtheeffectivenessoftheadmissioncontrolalgorithm.
I.INTRODUCTION
TheIEEE802.11MACusesthecontentionbasedDis-tributedCoordinationFunction(DCF)asthebasicaccessmechanismandapollingbasedPointCoordinationFunction(PCF)toprovidecontentionfreechannelaccess.IEEE802.11taskgroupEisde ningmechanismstoenhancetheQoSoftheoriginalMACstandard,includinganewcontentionaccessschemecalledEnhancedDistributedChannelAccess(EDCA)[1]andanimprovedpollingschemebasedonPCF.
Contentionbasedaccessmechanismsaresimpleandro-bust,buttheycannotguaranteedelayandthroughputbe-causeoftheirprobabilisticnature.Withsmallmodi cationtotheDCFaccessmechanism,whichvirtuallyallwirelessLANcardsimplement,relativepriorityserviceisprovided.ThispaperfocusesonthecontentionbasedEDCAaccessscheme,whichprovidesaprioritizedQoSserviceusinganindependenttransmitqueueandchannelaccessfunctionforeachtraf cclass.Traf cbelongingtoahigherpriorityclasshasahigherprobabilityoftransmission,thusachievingahigherthroughputwhencompetingwithlowerprioritytraf c.However,noassurancecanbegiventohigherprioritytraf cintermsofthroughputanddelayperformance.Theproblemisespeciallyapparentwhenthewirelesschannelisoverloadedcausingthebandwidthshareofeach owtodiminish.ThislimitstheuseofEDCAformanymultimediaapplicationsthatarenotcapableofdynamicallyadaptingtotheavailablebandwidthatanyinstant.Sincetheyrequireabsoluteband-widthprovisionfromthenetworks,resourcereservationandmanagementbecomesasigni cantissueinWLANsespeciallywhenbandwidthisrelativelyscarceandhastobesharedbymanyusers.AdmissioncontrolisanimportanttooltomaintainQoSexperiencedbyusers.Inthispaper,wepropose
To be published in Globecom, San Francisco, 1-5 Dec 2003
anadmissioncontrolalgorithmforthe802.11eEDCAthatwilltakeaccountofdynamicnetworkconditionssuchasthenumberofactive owsandtheparametersadoptedforthesedata ows.Bypredictingtheachievablethroughputofthedata owsandavoidingchanneloverloading,theQoSofexisting owscanbemaintained.WeincorporatetheconceptsofEDCAintotheadmissioncontrolalgorithmandextenditsabilitytoprovidebandwidthguarantees,insteadofprovidingarelativeprioritizedservice.Simulationresultsdemonstratethatbyimplementingtheproposedadmissionalgorithm,thethroughputofexisting owscanbeprotectedandresourcescanbemanagedeffectivelyaccordingtonetworkconditions.Thealgorithmisabletoselectsuitableparametersforgoodbandwidthanddelayperformance.
II.NEWFEATURESIN802.11EEDCA
TheEDCAaccessmechanismsupportsrelativepriorityservicethroughtheintroductionofAccessCategories(ACs).InsteadofusingasinglequeueandonechannelaccessfunctionasinDCF,eachstationimplementsmultipleACs.EachACconsistsofanindependenttransmitqueueandachannelaccessfunctionwithitsownparameters,thatincludeminimumandmaximumContentionWindows(CWmin,CWmax),ArbitrationInterframeSpace(AIFS)andTransmissionOpportunity(TXOP)duration.OperationofeachchannelaccessfunctionissimilartoDCF.DatatransmissionbeginswhenthemediumisidleformorethantheAIFStime,withAIFS≥DIFS(DCFInterframeSpace,seeFig.1).Ifthemediumisdeterminedtobebusy,theaccessfunctionsetsitsbackofftimertoaninitialvalueofrandom(0,CWmin[AC])×slottime.ThebackofftimerisdecrementedbyaslottimeforeachtimeslotafterthemediumissensedidleforanAIFStimeandstopsdecrementingwhenatransmissionisdetected.ItresumeswhenthemediumissensedidleagainforanAIFStime.Achannelaccessfunctioncanbegintransmissiononthechannelassoonasthebackofftimerreacheszero.Anacknowledgementframeissenttothesendertoindicateasuccessfultransmissionofadataframe.IfnoacknowledgementisreceivedafteraShortIFS(SIFS),acollisionispresumedtohaveoccurred.Thebackofftimerafteracollisionischosentoberandom(0,(CWmin[AC]+1)×2i-1)×slottimeforeachretransmissionattempti.Inotherwords,thecontentionwindowsizeisdoubledforeachretransmissiontoreducetheprobabilityofcollision.HigherpriorityACsadoptlowervaluesforCWminandAIFStoyieldahigher
Abstract — This paper proposes an admission control algorithm that enables the upcoming IEEE 802.11e contention based Enhanced Distributed Channel Access (EDCA) to provide quantitative bandwidth guarantees for Wireless Local Area Networks (WLANs), rather
probabilityofsuccessfullycontendingforchannel
access.
Fig.1:Backofftimer,IFSandCWinEDCAaccess
Anothernewfeaturein802.11eistheTXOPwhichistheperiodachannelaccessfunctionhastherighttoaccessthemediumafterasuccessfulcontention,withthemaximumdurationde nedinTXOPLimit[AC].AnEDCA-TXOPisobtainedthroughcontentionchannelaccess.AchannelaccessfunctionisallowedtocontinuetransmissionafterwaitingaSIFSfollowingthesuccessfulcompletionofaframeexchangesequence,aslongasthetotaltransmissiontimedoesnotexceedTXOPLimit[AC].
III.MAINTAININGQOSINEDCA
Realtimemultimediatraf cgeneratedbyapplicationslikevideoconferencing,videoondemandandvoiceoverIPrequirescertainlevelofQoS.InaWLAN,itiscrucialtorestrictthevolumeoftraf cinordertomaintainservicequalityofcurrentservingtraf c.Iftherearenorestrictionstolimitthevolumeoftraf cbeingintroducedtotheserviceset,throughputdegradationandhighmediumaccessdelaywillresultduetoincreasingbackofftime.Thisisundesirableforinelastictraf csuchasvideoandvoiceapplicationsthatrequiresacertainlevelofbandwidthanddelayguarantees.InEDCAthereistheproblemofthespillovereffectwhentraf cisoverloadedinanAC,performanceinotherACswillalsobeaffected.Unlikewirednetworkswherebandwidthprovisioncanbemanagedatacentralizedpoint,usuallylocatedattheboundaryofasubnetwork,transmissionqueuesinaWLANaredistributedandsharethesamemedium.TheextentoftheeffectwilldependontheparametersadoptedfortheACsandthecurrentnetworkcondition.ThisproblemishighlightedinFig.2whichshowsasimulationof8ConstantBitRate(CBR)streamsat1.5Mbps-4streamseachinbothAC[1](lowestpriority)andAC[3](highestpriority).TwostreamsinAC[2]starttransmittingat1.5Mbpsandincreasetheirbitrateby400kbpsevery5seconds.Withoutadmissioncontrol,thechannelbecomesoverloadedafter13seconds.TheeffectonthroughputperformanceofAC[1]andAC[3]isdifferentduetodifferentparametersbeingselected(seesectionV).Bylimitingthetotaladmittedtraf cintheWLANbelowthetotalachievablethroughput,currentadmittedtraf ccanbeprotectedandchannelutilizationwillnotdegradesigni cantly.Thedif cultyofimplementingthisapproachin802.11liesinestimatingthevalueoftheachievablethroughputintheWLAN.Thisvaluedependsonseveraltimevaryingfactorsincludingthenumberofactivestations,theofferedtraf cvolumeandeachAC’sparameters(i.e.CWmin,CWmax,
TXOP).Otherfactorssuchaschannelinterference,signalstrengthandmultipathfadingwillnotbeconsideredheresincetheycannotbeknownapriori.
400000AC[3]AC[3]AC[3]AC[2] medium priority,350000
AC[3]increasing bit rate
AC[1]AC[1]AC[1]300000AC[1]AC[2]AC[2]
)
ces250000
/setyb( tu200000AC[3] highest priority
phguorh150000
T100000
AC[1] lowest priority
50000
05101520
253035404550
Time (sec)
Fig.2:Effectofchanneloverloading
Duetothenon-deterministicnatureofpacketarrivalsandtherandomnatureofbackofftimervalues,itisdif culttoprovideabsoluteguaranteesondelayandthroughputonasmalltimescale.However,itispossibletoderiveboundsonachievablethroughputoverthelongertermaschannelstatisticsarecollectedandaveraged.Theachievablethroughputcanbeestimatedwithminimalsignalingcostandcomplexity.Wearguethatbykeepingthetraf c owbelowthisthroughputlimit,QoScanbemaintained.Videoandvoicetraf c,thatgenerallyhavelong(>60seconds)connectiontimeswithsimilarpacketstatisticsforeachconnection,willbene tfromthisapproach.Admissioncontrolwillhelptomaintaingooduserperceivedqualitybyavoidingchanneloverloading.
IV.ADMISSIONCONTROLFOREDCA
A.Estimationofachievablethroughput
Thissectionintroducesa owbasedthroughputestimationalgorithmforEDCA.A ow,inthecontextofthisdiscussion,isde nedasasetofpacketsbelongingtothesameACofastationandusesthesamesetofparametersandbackofftimer.Thealgorithmutilizescollisionstatisticsofeach owtopredicttheachievablethroughput.Theestimationofachiev-ablethroughputforeachdata owisbasedonthe802.11MACanalyticalmodelproposedin[2].Weextendthisworktoestimatethethroughputof ows,eachwithdifferentchannelaccessparametersandincorporatetheconceptofTXOPintothealgorithm.Inthismodel,thetransmissionprobabilityofa owcanbederivedwiththefollowingformula:
P(txinaslot| ow=i)=
2(1 2pi)
(1 2pi)(W+1)+piW(1 (2pi))
(1)
pi=longtermcollisionprobabilityof owiW=CWminsizeusedfor owib=
maximumbackoffstage
withCWmax=(CWmin+1)×2b 1
Themodelassumesthatthepacketcollisionprobabilityisconstantandindependentofthetransmissionstate.Traf csourcesareassumedtohaveunlimiteddatatosend.Sinceweareprimarilyinterestedinpredictingachievablethroughput
Abstract — This paper proposes an admission control algorithm that enables the upcoming IEEE 802.11e contention based Enhanced Distributed Channel Access (EDCA) to provide quantitative bandwidth guarantees for Wireless Local Area Networks (WLANs), rather
Achievablethroughput[i]=
P(successfultransmission| ow=i)×Datapayloadsize
P(collision)×Durationcollision+P(slotisidle)×aSlotTime+P(successfultransmission)×Durationsuccess
(2)
Table1:Cycledurationofdifferentaccessschemes
foreachtraf c owundersaturationconditions,thestatedassumptionswillnothaveagreatimpactontheaccuracyoftheresults.Thealgorithmusesparametersdecidedatrun-timeincludingCWmin,CWmax,physicallayertransmissionrateandTXOPduration.Giventheseparametersandthemonitoredcollisionrateofeach ow,thetransmissionprobabilityfor owiatsaturationconditioniscalculatedusing(1).Inordertoestimatethesaturationthroughput,threepiecesofinformationarederived-theprobabilitiesoftransmission,collisionandidleinaslot.Theprobabilityofasuccessfultransmissionwith owiisgivenbytheproductoftheprobabilityof owitransmittingandallother owsnottransmitting.Acollisionoccurswhenmultiple owstransmitinthesameslotwiththeprobabilitygivenbythedifferencebetweenprobabilityofoneormoretransmissionsinaslotandonlyonetransmissioninaslot.Theslotisidlewhenallstationsarenottransmitting.Assumingthattherearemactive ows,theprobabilitiesarecalculatedasfollows:
P(successfultx| ow=i)
=P(txinaslot| ow=i)×(1-P(txinaslot| ow=i))P(successfultxinaslot)=
m
i=1
P(successfultx| ow=i)
P(1ormoretxinaslot)=1-
m
i=1
(1-P(txinaslot| ow=i))
P(collision m
inaslot)=P(1ormoretxinaslot)-i=1P(successfultxinaslot| ow=i)P(slotisidle)=1-P(1ormoretxinaslot)
Withtheseprobabilities,theachievablethroughputof ow
iistheproportionoftimefortransmittingdatapayloadinrespecttoidle,collisionandheadertransmissiontime,duringacycleofframeexchange.Acycleofframeexchangeconsistsofseveralcollisioncyclesandonesuccessfuldataframetransmissionplusheadertransmissionandidletimes.Theachievablethroughputfor owiiscalculatedasinequation(2).Thecycledurationtimeisthetimerequiredtotransmittheframesequenceplustheassociatedpreamblesandphysicallayerheadersinthecycle(pleaserefertotable1).B.ImplementationofAdmissionControl
Theproposedadmissioncontrolusestheaboveachievablebandwidthestimationalgorithm.Themainobjectiveistopreventchanneloverloadandprotectadmitted ows.Thisisparticularlyimportanttoinelasticmultimediatraf cthataresensitivetobandwidth uctuations.Thedatastreamwillnotbeadmittedifthecontrolalgorithmdeterminesthatthere
isinsuf cientbandwidthtoservicethenewstream.Thealgorithmalsoaidsintheselectionofparameterssuchascontentionwindowsizeandtransmissionopportunityduration,as ndingtherightparameterscanbedif cult[3].
TheadmissioncontrolisimplementedintheAccessPoint(AP)operatingininfrastructuremodewiththeresponsibilityofcollisionmonitoring,throughputestimationandmakingadmissiondecisions.Eachactive owneedsacountertokeeptrackofthecollisionrate.Thecollisionrateiscalculatedeveryupdateperiodusingexponentialweightedaverageaccordingto(3)toremoveshortterm uctuationsduetointerference.Weadoptedavalueof0.8forαand1secondforupdateperiodinoursimulation.Thesetwoparameterscontrolthevariabilityoftheestimatedthroughput.Webelievetheval-ueschosenprovideagoodbalancebetweenremovingshortterm uctuationsandre ectingthelongtermtrend.Furtheroptimizationmaybeneededtodeterminethebestparametersaccordingtotraf cbehaviour.
pi,newaverage=(1 α)pi,current+αpi,previousaverage
(3)
Fromthisinformation,theadmissioncontrollerisabletopredicttheachievablethroughputofthe ows.Stationsneedtomakearequesttotheadmissioncontrollertoobtainthedesiredbandwidthbeforetransmission.Ifadmittingthenew owcausestotaladmittedtraf ctoexceedthelimit,therequestisrejected.TheadmissionalgorithmsearchesforthebestparametersforCWminandTXOPduration(ifused),giventherequiredbandwidthofthenewstream.Whenanew owrequestismade,thecollisionrateisinitializedtotheaveragecollisionrateoftheexisting owhavingasimilarachievablethroughputasthedesiredbandwidthofthenew ow.Thebasicoperationinvolvesiterativelyreducingthecontentionwindowsizeandestimatingtheachievablethroughputuntilitmatchesthebandwidthdescriptionofthenew ow.Alternatively,ifTXOPisused,theTXOPdurationcanbeincreasedtoyieldahigherachievablethroughputforthe ow.
foreachupdate{if(nonewflowrequests){
updateparametersandcollisionprobinrecord;runachievablebandwidthestimationalgorithm;}
elseif(newflowrequestexists){
collision=collisionofflowwithsimilarthroughput;fori=1:numactive+1
Abstract — This paper proposes an admission control algorithm that enables the upcoming IEEE 802.11e contention based Enhanced Distributed Channel Access (EDCA) to provide quantitative bandwidth guarantees for Wireless Local Area Networks (WLANs), rather
calculateachievablethroughput[i];
fori=1:numflows+1{
if(requestbw[i]>achievable{reduceCWorincreaseTXOP;
re-estimateachievablethroughput;}
if(CWorTXOPlimitisreached){rejectnewflow;
restoretooriginalparameters;exitprogram;}}
admitnewflow;
distributenewparameterstostations;}}
Fig.3:Pseudocodeofadmissioncontrol
V.SIMULATIONRESULTS
Simulationswereconductedusingthenetworksimulator(ns-2)[4].Inthesesimulations,nohiddenstationswerepresentandthechannelwasassumedtobeerrorfree.Allstationsoperatedat36Mbpscomplyingwiththe802.11aphysicallayerstandardandhadoneactive owatatime.A.AchievableThroughputofaFlow
We rstverifytheaccuracyofthroughputestimationatsaturationlevel.ThreeACsareusedwithCWminsizesof15,31and63.EachACconsistsof4CBR owsfrom4stationswithunlimiteddatasourceandthereareatotalof12active ows.CWmaxsizesforallthreeACsaresetto1023.AIFSissetequaltoDIFS.FivesimulationrunsareconductedwithvariedMACservicedataunit(MSDU)sizesfrom256to2048B.TheachievablethroughputforeachACisestimatedandcomparedwithsimulationresults.ThroughputofonlyonestreamforeachACisshowninFig.4toeasecomparison.
450000Simulation AC[2]400000Simulation AC[1]Estimate AC[3]Estimate AC[2]Estimate AC[1]
350000)
ces/s300000etyb( tup250000hguorh200000t noitaru150000tas10000050000
0200
400600800
100012001400160018002000
MSDU size (bytes)
Fig.4:Estimatedachievablethroughputcloselymatchessimulation
resultsfordifferentACs.
Asseenfromtheseresults,thealgorithmprovidesagoodestimationoftheachievablethroughputofanAC.ItisclearthathighpriorityACs,withsmallercontentionwindowsandlargerMSDUsizes(orTXOPdurations),willhaveahigherthroughputwhenthechannelisfullyutilized.
B.EffectivenessofAdmissionControlAlgorithm
Thesimulationstartswith15stationsand15CBR ows,5at1.8Mbpswith1000BpacketsandCWmin=13,5at500kbpswith500BpacketsandCWmin=31,and5at80kbpswith100BpacketsandCWmin=40.TheCWminvaluesaredeterminedbytheadmissioncontrolalgorithm.RTS/CTSmechanismisused.These15 owsareadmittedtotheservicesetandtheyreachtheachievablethroughputlimitindicatedbytheadmissioncontrolalgorithm.ThereasonCBRtraf cischoseninthesesimulationsisbecausewecanaccuratelyevaluatetheachievablethroughputlimitsestimatedbythealgorithm,bysettingeach owtransmittingclosetothepredictedthroughputlimit.Incaseofvariablebitratetraf c,similarperformancecanbeachievedbylimitingtheofferedtraf cofeach owbelowitsestimatedlimit.Dependingonthenetworksituation,furthertraf cengineeringtoolscanbeapplied(e.g.leakybucket)toreducetheburstinessandallowtraf ctotransmitabovethelimitsmomentarily,therebyincreasingef ciency.Wenowfocusontheregionwhenthechannelisfullyutilized.Wewouldliketostudytheeffectofadmittinganew owwhentheadmissioncontrolindicatesweshouldnotdoso.20secondsintothesimulation,anadditional ow( ow16)at1.8Mbpsandpacketsizeof1000B(CWmin=15)startstransmission.Theresultisthatall owsexperiencedqualitydegradationduetochanneloverload.Weidenti edtworegionsforinvestigation,the owphasefrom5to20secondswhenall owsaretransmittingbelowtheirestimatedachievablethroughputlimits,andthesaturationphasefrom20secondsonwardswhenthenew owcausesthelimittobeexceeded.
350000flow 1 1800Kbpsflow 2 1800Kbpsflow 6 1800Kbps300000
flow 7 500Kbpsflow 8 500Kbpsflow 12 80Kbpsflow 13 80Kbps
250000)
ces/set200000
yb( tuphgu150000
orhFlow Phase
Saturation Phase
t100000
50000
5101520
25303540
time (sec)
Fig.5:Throughputperformancewithadmissioncontrolenabled100(t=0to20s)anddisabled(t=20to40s)
High Priorityflow 2 90AC[3]
flow 3 flow 4 flow 5 80Medium Priorityflow 6 flow 7 AC[2]
flow 8 )
70%flow 10 flow 9 ( flow 11 no60Low Priorityflow 12 ituAC[1]flow 13 biflow 14 rts50flow 15
id evitalu40muc3020100
00.020.04
0.060.080.10.12
latency (sec)
Fig.6:Mediumaccessdelaysduring owphase
Abstract — This paper proposes an admission control algorithm that enables the upcoming IEEE 802.11e contention based Enhanced Distributed Channel Access (EDCA) to provide quantitative bandwidth guarantees for Wireless Local Area Networks (WLANs), rather
100flow 2 90
flow 3 High priority
flow 4 flow 5 80flow 6 flow 7 flow 8 )
70%flow 10 flow 9 ( flow 11 no60Medium and low priorities
flow 12 ituflow 13 bflow 14 irtsflow 15 id50flow 16
evitalu40muc3020100
00.20.4
0.60.811.21.4
latency (sec)
Fig.7:Mediumaccessdelaysduringsaturationphase
ThroughputperformanceisshowninFig.5duringthe35secondperiod.Throughputisstableforthe rst15secondsindicatingthemediumiscapableofhandlingthetraf c.However,wecanseethatthebandwidth http://paringthisgraphwithFig.2,duringthesaturationphase(from13secondsonwardsinFig.2),the owsthatremainbelowtheirachievablethroughputareunaffected.ThesituationisdifferentinFig.5sinceall owsaretransmittingjustbelowtheirachievablethroughput.Theeffectofoverloadingextendstoall ows,asthethroughputofall owsstartsto uctuate.Theimplicationofthiseffectcanbeappliedtoprotectimportant owsbyassigninghigherachievablethroughputtothese owsthantheofferedtraf c,thusprovidingabuffertomaintainQoStosomeextents.Thedrawbackislowerchannelutilizationandhighercollisionratesbecauseofsmallercontentionwindowsizeandhighertransmissionprobability.Fig.6showsthemediumaccessdelaydistributionduringthe owphase.Flows11to15havetheworstdelayperformancebutthemaximumdelayremainsbelow100ms.Fig.7showsthedelaydistri-butionduringthesaturationphase.Thedelayperformancedeterioratesrapidlyasadditionaltraf cisintroducedtothenetwork.Delayisgreaterthan0.6sforatleast10%ofthetraf cinthemediumandlowpriorityACs.
VI.RELATEDWORK
TheVirtualMACalgorithmin[5]passivelymonitorstheradiochannelandestimateslocallyachievableservicelevels.Themaincriteriaforthedecisionofadmissioncontrolisbasedondelayandcollisionestimates.Itdoesnotprovideanyachievablethroughputinformation,whichisalsousefultomultimediaapplications.AnotherdrawbackisthatthevirtualMACalgorithmcomputationscomplicatethemobilestation.TheAssuredRateMACExtensionproposedin[6]extendstheassuredrateserviceinDifferentiatedServicesto802.11WLANs.Thisschemeachievesthedesiredthroughputbydynamicallyadjustingthecontentionwindowsizebasedonobservationoftheestimatedsendinganddesiredrates.Inthecasewhenthesendingrateisbelowthedesiredrate,thecon-tentionwindowsizeisreducedtoobtainahigherthroughput.Alongwithothersimilarproposals[7],[8]for802.11MACtosupportQoS,theseschemesonlyproviderelativepriorityandbandwidthofcurrent owsarenotprotected.
VII.CONCLUSIONANDFUTUREWORK
Thispaperhighlightsthedif cultiesofmaintainingQoSincontentionbased802.11WLANs.ByconsideringtheinteractionofframetransmissionsintheMAClayer,weareabletopredicttheachievablethroughputforeach ow.Thisinformationprovidesausefulguidingpointtoef cientlymanagebandwidthprovisioninEDCAbyeliminatingmuchoftheguesswork.SimulationresultsshowedourproposedadmissioncontrolcaneffectivelymaintaintheQoSofadmitted owsbypreventinganynew owsoverloadingthechannel.Throughputanddelayperformanceremainedatacceptablelevelsforreal-timetraf caslongasofferedtraf cisbelowtheestimatedlimits.
TheCWminparameteraffectsboththedelayandbandwidththata owexperiences.Inorderfora owtoreceivelowdelay,itneedstohavealowCWmin,whichgivesitahighthrough-put.However,applicationslikevoicerequirelowerdelayandlowerthroughputthanapplicationslikevideo.OnesolutionistoassignlargerTXOPdurationtoavoice owtoallowittotransmitmultiplepacketsineachsuccessfulcontention.However,thedelayjitterwillincreaseasthe rstpacketinapacketburstwillexperienceahigherdelaycomparedtothesubsequentpackets.Theextentofdelayjitterrequiresfurtherstudy.However,simulationresultsdemonstratethatevenifTXOPsarenotused,delaycanremainatsatisfactorylevel.Thecurrentdraftof802.11e[1]speci esadirectlinkprotocoltoallowdirectcommunicationsbetweennon-APstationsininfrastructuremode,uponregistrationwiththeAP.Ourproposedadmissioncontrolalgorithmcanbemodi edforusedunderthisscheme,withtheworkofcollisionmonitoringbeingshiftedtothenon-APstationsandpassingthecollisioninformationtotheAPusingasignalingprotocol.Pleasereferto[9]fordetails.Futurestudieswillalsoincludevariouschan-nelerrormodelstostudytheeffectivenessoftheadmissioncontrolalgorithm.
ACKNOWLEDGEMENTS
ThisworkissupportedbytheAustralianResearchCouncilandindustrypartnerSingTelOptusPtyLtd.
REFERENCES
[1]IEEEDraftStandard802.11e/D4.4,June.2003.
[2]G.Bianchi,PerformanceAnalysisoftheIEEE802.11Distributed
CoordinationFunction,IEEEJSAC,18(3):535-47,Mar.2000.
[3]S.Mangoldetal.,IEEE802.11eWirelessLANforQualityofService,
Proc.ofEuropeanWireless2002,pp.32-9.
[4]TheNetworkSimulator(ns-2),www.isi.edu/nsnam/ns/
[5]A.Veresetal.,SupportingServiceDifferentiationinWirelessPacketNet-worksUsingDistributedControl,IEEEJSAC19(10):2081-93,Oct.2001.[6]A.Banchs,X.Perez,ProvidingThroughputGuaranteesinIEEE802.11
WirelessLAN,Proc.IEEEWCNC2002,Vol.1,pp.130-8.
[7]K.Saitohetal.,AnEffectiveDataTransferMethodbyIntegrating
PriorityControlintoMultirateMechanismsforIEEE802.11WirelessLANs,Proc.IEEEVTC2002,Vol1,pp.55-9.
[8]D.QiaoandK.G.Shin,AchievingEf cientChannelUtilizationand
WeightedFairnessforDataCommunicationsinIEEE802.11WLANundertheDCF,IEEEInt’lWorkshoponQoS,2002,pp.227-36.
[9]D.Pong,TechnicalReport-AdmissioncontrolforIEEE802.11eEDCF,
March2003.(http://uluru.ee.unsw.edu.au/~dennis/adcontrol80211.pdf)