二阶Camassa Holm方程行波解的稳定性及性质
11 cc)si(x-ct)+12 222x-ct) xt≥c
1 1c c)co(x-ct) 12 222
1 -c si(x-ct)-2 2 x-ct)( x<ct 1 cco(x-ct) (1 2sssup|c+|c‖φ‖Lφ≤|∞=exxxx|1|2|
(0)‖v‖H2=‖v‖H2
2∞
将L嵌入到H中可得:
m与x无关)‖w‖L‖w‖H2 (∞≤m
w=v-φ|v|-|w|v|+|φ|≤|≤|φ|
(0)‖w‖H2≤‖φ‖H2+‖v‖H2=‖φ‖H2+(0)‖v‖H2
(0)(0)‖w‖L‖φ‖H2+m‖v‖H2∞≤m
φxxx= (-c1c2)si1(x-ct)+ x 22(-ct) 11 x≥ct
2c2-co2(x-ct) 12c12c2)si12(x-ct)+ x-ct)
x<ct (12c12c2)co12(x-ct) ‖φxxx‖L∞=esssup|φ+1xxx|≤2|c1|+12|c2|φxxxx= c1-c12)si(x-ct)- 22x-ct) ( x≥ct 1c1-co1(x-ct)
22 2c1-c2)si1(x-ct)- 2x-ct) 1 x<ct2c1
co1 2(x-ct)- ‖φxxxx‖L∞=esssup|φ+1
xxxx|≤2
|c1|+|c2|φxxxxx= (12c12c2)si12(x-ct)+ (x-ct) xt
c11 ≥c1c2)co(x-ct)
222 (c122)si12(x-ct)- x-ct) x<ct 12c2co1 2(x-ct) ‖φxxxxx‖L∞=esssup|φxxxxx|≤+12|c1|++12
|c2|因为H=∫
v2+v2+2
xvxx
dx是方程(1)的守衡量所以
‖φ‖H2=‖φ(0)‖H2
取M=max
{11
5
2
‖φx
‖L
∞+‖φxx
‖L∞+2‖φx
xx
‖L∞+‖φxxxx‖L∞+‖φxxxxx
‖L∞,2‖w‖L∞+2‖φ‖L∞+1
2‖φx‖L
∞+3‖φxx‖L∞+‖φxxxx
‖L∞,2‖w‖L∞+1
2
‖φ‖L∞+4‖φx‖L∞+3‖φxx
‖L∞+3
2‖φx
xx‖L∞}
(10)
由式(
9,10)得到:ddt
(‖w‖22+‖wx‖22
LL2+‖wxx‖L2≤M‖w‖22L2+M‖wx‖L2+M‖w2xx‖L2=M(‖w‖222L2+‖wx‖L2+‖wxx
‖L2)即:
ddt
‖w‖22
H2≤M‖w‖H2由Grownwall不等式可得:
t
‖w‖2Mdt‖2H2≤e∫0‖w(0)H2
即:
‖w‖2
∫t
H
2≤e0Mdt‖w(0)‖H2
取 δ=ε
e
∫t
0Mdt可得:
‖w‖2H2≤ε
即:
‖v(t,·)-φ(·ct)‖H2<ε
因此,称φ(x,t)是轨道稳定的.
2 二阶CamassaHolm方程行波解的零值分布
当k=2时,高阶Camassa-Holm方程行波解:
φ(x,t)=(c1co11
2(x-ct)+c2
si2
(x-ct))e-(x-ct)| c1c2=0
式中:c为波速.