大学线性代数讲义前面有对知识的讲解,后面是习题。便于理解。不想挂科的同学们的必备之物
§1.5Gramer{u
yQ· 5?Øn£ §|
a11x1+a12x2+···+a1nxn=b1 ax+ax+···+ax=b2112222nn2 .............................................
am1x1+am2x2+···+amnxn=bm
(I)
'A¯K.x1,x2,···,xn&¡ (I)'n þ.
ùpn ±Ø1um.aij∈P,´~ê,§&¡ §|(I)'Xê.b1,b2,···,bn∈P,§ &¡ §|(I)'~ê .
Xtò~êc1,···,cn \ §¥x1,···,xn¦ §|(I)¤á,@o¡ù|ê(c1,c2,···,cn) §|(I)' |A.
Xté?Û |ê(c1,···,cn)∈Pn,§ÑØU÷v §|(I),@o¡ §|QP¥ÃA.
2x+3y=4
~X±eù §|´ÃA'µ
2x+3y=0
Xtb1=0,b2=0,···,bn=0,@o §|£I¤g
a11x1+a12x2+···+a1nxn=0 ax+ax+···+ax=02112222nn ............................................
am1x1+am2x2+···+amnxn=0
(II)
¿ ¡§ àg S §|.Ï (0,0,···,0)´£II¤'A(&¡ 0A),Ïdàg S §|o´kA'.àg S §|Ø"A© Uk "A.~X
x 2y+z=0x+y+z=0
x=1,y=0,z= 1 ´ §' |A.
A S §|' {kxõ,e¡· Ñ «^I ª5¦A' {.=Gramer {.ù« { ¦ §ê þ ê Ó(m=n).
a11a12···a1n a 21a22···a2n
PD= ,
············ a n1an2···ann
ù I ª&¡ §|(I)'XêI ª.Dj D¥Ij d~ê b1,···,bn O& 'I ª.=
a11···a1(j 1)b1a1(j+1)···a1n a 21···a2(j 1)b2a2(j+1)···a2n Dj= .
····················· abnan(j+1)···ann n1···an(j 1)