大学线性代数讲义前面有对知识的讲解,后面是习题。便于理解。不想挂科的同学们的必备之物
y².D= ( 1)τ(i1,···,in)aa
1i1···(jij+ajij)···anin
= ( 1)τ(i1,···,in)a1i n)1···ajij···aniτ(i1,···,in+( 1)a1i1···a jij···anin.¤±þª¤á.2
íØ1.12e1 ªkü1éA1¤'~,u1 ª ".
5 1.131 ª', 1( )\þ, 1'k ,u1 ª' ØC.y².dS 1.11ÚíØ1.12
&.2~.O D= 1201 132
50 015 .
36 1 234 5
0
1 A.D=1
1201
12
23100
1
0 110 2 1201 03518 =
03
518 0 110 2 = 515 003512 1201 1015
4
00 1201 1
0015 1
=1 0 110 2 0 110 30 0 =1
2 1
0514 30 00514 30
(( 1)×5×( 43))=
=0015 1 000 42 1
43.5.þãIn,o,Ê,8 1Ò'O v§ g´:I I~ I I'
!Ó IoI~ I I'Ê!;InI\þI I'n!;InI~ IoI' !;IoI~ InI' n!. xaa···a
:O n0I ªD axa···a ~n= ··············· ··············· aa···ax x+(n 1)aaa···a
x+(n 1)a00···
x+(n 1)axa···a 0x ···A.D= ···············
a0 ···· ··············· =
··········· x+(n 1)aa···ax ········· 00···
=(x+(n 1) a)(x a)n 1.
a1+b1b1+c1c1+a1 a1b1c1 ~:y² a 2+b2b2+c2c2+a2
ac =2 a2b2c2 .
3+b3b3+c33+a3 a3b3c3
0 0
··· ···
x a