大学线性代数讲义前面有对知识的讲解,后面是习题。便于理解。不想挂科的同学们的必备之物
½n1.17XtD=0,@o §|(I)k Aµx1=D1/D,x2=D2/D,···,xn=Dn/D.
y²(1).ky²x1=D1/D,x2=D2/D,···,xn=Dn/D´(I)'A.Dj=b1A1j+···+bnAnj.òx1=D1/D,x2=D2/D,···,xn=Dn/D \ §|'I §µ
nnn 11
a1j(biAij)a11(D1/D)+a12(D2/D)+···+a1n(Dn/D)=((a1jDj))=1
=n n j=1i=1
1
bi(a1jAij)=n n i=1j=1
1
bi(a1jAij)=j=1n
bi(
n
j=1i=1
i=1j=1
1
a1jAij)=b1D=b1
^Ó ' { ±&µx1=D1/D,x2=D2/D,···,xn=Dn/D÷vI2
§,···,In §.Ïd,§´(I)'A.
(2).Py S.=Xt k(c1,···,cn) ´ §|(I)'A,@U÷v(I)¥'z §.=ai1c1+ai2c2+···+aincn=bi,i=1,2,···,n.· w
a11c1a12···a1n
aca
21122···a2n
c1D=
············
aca
n11n2···ann
a11c1+a12c2a12···a1n
ac+acaa2n òc2¦I2 \I1 211 22222···
=
············
ac+aca
n11n22n2···ann
a11c1+a12c2+···+a1ncna12···a1n
ac+ac+···+acaa2n 2112222nn22···
=···=
············
ac+ac+···+aca
n11n22nnnn2···ann
b1a12···a1n
b 2a22···a2n
= =D1.
············
ba···a
n
n2
nn
u´c1=D1/D,Ó ,c2=D2/D,···,cn=Dn/D.2½n1.18Xtàg §
a11x1+a12x2+···+a1nxn=0 ax+ax+···+ax=02112222nn ...........................................
am1x1+am2x2+···+amnxn=0'Xê1 ªD=0,@o(II) k"A.
(II)