手机版

惯性矩的计算方法[1]

发布时间:2021-06-06   来源:未知    
字号:

第 1 页 共 12 页

(4-2b)

式中 y、 z 为截面图形形心的坐标值.若把式 (4-2) 改写成

(4-3)

性质:

若截面图形的静矩等于零,则此坐标轴必定通过截面的形心. 若坐标轴通过截面形心,则截面对此轴的静矩必为零.

由于截面图形的对称轴必定通过截面形心,故图形对其对称轴的静矩恒为零。

4 )工程实际中,有些构件的截面形状比较复杂,将这些复杂的截面形状看成是由若干简单图形 ( 如矩形、圆形等 ) 组合而成的.对于这样的组合截面图形,计算静矩 (S

) 与形心坐标 (y、 z ) 时,可用以下公式

(4-4)

(4-5)

式中 A, y , z 分别表示第个简单图形的面积及其形心坐标值, n 为组成组合图形的简单图形个数.

即:组合图形对某一轴的静矩等于组成它的简单图形对同一轴的静矩的代数和.组合图形的形心坐标值等于组合图形对相应坐标轴的静矩除以组合图形的面积.组合截面图形有时还可以认为是由一种简单图形减去另一种简单图形所组成的. 例 4-1 已知 T 形截面尺寸如图 4-2 所示,试确定此截面的形心坐标值.

第 2 页 共 12 页

设任一截面图形 ( 图 4 — 3) ,其面积为 A .选取直角坐标系 yoz ,在坐标为 (y 、 z) 处取一微小面积 dA ,定义此微面积 dA 乘以到坐标原点o的距离的平方距离的平方

,沿整个截面积分,为截面图形的极惯性矩 I

.微面积 dA 乘以到坐标轴 y 的

,沿整个截面积分为截面图形对 y 轴的惯性矩 I.极惯性矩、惯性矩常简称极惯矩、惯矩.

数学表达式为

第 3 页 共 12 页

极惯性矩

(4-6)

对 y 轴惯性矩

(4 -7a )

同理,对 z 轴惯性矩

(4-7b)

由图 4-3 看到所以有

即 (4-8) 式 (4 — 8) 说明截面对任一对正交轴的惯性矩之和恒等于它对该两轴交点的极惯性矩。

在任一截面图形中 ( 图 4 — 3) ,取微面积

dA 与它的坐标 z 、 y

值的乘积,沿整个截面积分,定义此积分为截面图形对 y 、 z 轴的惯性积,简称惯积.表达式为

(4-9)

惯性矩、极惯性矩与惯性积的量纲均为长度的四次方. I,I,I恒为正值.而惯性积 I其值能为正,可能为负,也可能为零.若

选取的坐标系中,有一轴是截面的对称轴,则截面图形对此轴的惯性积必等于零.

当截面图形对某一对正交坐标轴的惯性积等于零时,称此对坐标轴为截面图形的主惯性轴.对主惯性轴的惯性矩称为主惯性矩.而通过图形形心的主惯性轴称为形心主惯性轴 ( 或称主形心惯轴 ) .截面对形心主惯性轴的惯性矩称为形心主惯性矩 ( 或称主形心惯矩 ) .例如,图 4-4 中若这对 yz 轴通过截面形心,则它们就是形心主惯性轴.对这两个轴的惯性矩即为形心主惯性矩.

第 4 页 共 12 页

惯性矩的计算方法[1].doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)