手机版

Multiresolution Representation for Orbital Dynamics in Multi

发布时间:2021-06-07   来源:未知    
字号:

We present the applications of variation -- wavelet analysis to polynomial/rational approximations for orbital motion in transverse plane for a single particle in a circular magnetic lattice in case when we take into account multipolar expansion up to an a

MULTIRESOLUTIONREPRESENTATIONFORORBITALDYNAMICSIN

MULTIPOLARFIELDS

000

A.Fedorova,M.Zeitlin,IPME,RAS,V.O.Bolshojpr.,61,199178,St.Petersburg,Russia 2 guAbstract

AWepresenttheapplicationsofvariation–waveletanalysis 3topolynomial/rationalapproximationsfororbitalmotionin1transverseplaneforasingleparticleinacircularmagnetic latticeincasewhenwetakeintoaccountmultipolarexpan-]sionuptoanarbitrary nitenumberandadditionalkickphterms.Wereduceinitialdynamicalproblemtothe nite-cnumber(equaltothenumberofn-poles)ofstandardalge-cbraicalproblems.Wehavethesolutionasamultiresolutiona(multiscales)expansioninthebaseofcompactlysupported.swaveletbasis.

cisy1INTRODUCTION

hpInthispaperweconsidertheapplicationsofanewnumeri-[cal-analyticaltechniquewhichisbasedonthemethodsof localnonlinearharmonicanalysisorwaveletanalysistothe1orbitalmotionintransverseplaneforasingleparticleinav5circularmagneticlatticeincasewhenwetakeintoaccount4multipolarexpansionuptoanarbitrary nitenumberand0additionalkickterms.Wereduceinitialdynamicalprob-8lemtothe nitenumber(equaltothenumberofn-poles)of0standardalgebraicalproblemsandrepresentalldynamical0variablesasexpansioninthebasesofmaximallylocalized/0inphasespacefunctions(waveletbases).Waveletanalysisscisarelativelynovelsetofmathematicalmethods,whichigivesusapossibilitytoworkwithwell-localizedbasesinsyfunctionalspacesandgivesforthegeneraltypeofopera-htors(differential,integral,pseudodifferential)insuchbasespthemaximumsparseforms.Ourapproachinthispaperis:vbasedonthegeneralizationofvariational-waveletapproachiX

from[1]-[8],whichallowsustoconsidernotonlypolyno-mialbutrationaltypeofnonlinearities[9].Thesolutionr

ahasthefollowingform

z(t)=zslow

N(t)+

zj(ωjt),ωj~2j(1)

j≥N

whichcorrespondstothefullmultiresolutionexpansionin

alltimescales.Formulagivesusexpansionintoaslow

partzslow

NandfastoscillatingpartsforarbitraryN.So,wemaymovefromcoarsescalesofresolutiontothe nestoneforobtainingmoredetailedinformationaboutourdynami-calprocess.The rsttermintheRHSofequation(1)corre-spondsonthegloballeveloffunctionspacedecompositiontoresolutionspaceandthesecondonetodetailspace.Inthiswaywegivecontributiontoourfullsolutionfromeachscaleofresolutionoreachtimescale.Thesameiscorrect

+

2

1

y2

2+k1(s)

(n+1)!

·(x+iy)(n+1)

Thenwemaytakeintoaccountarbitrarybut nitenumberoftermsinexpansionofRHSofHamiltonianandfromourpointofviewthecorrespondingHamiltonianequationsofmotionsarenotmorethannonlinearordinarydifferen-tialequationswithpolynomialnonlinearitiesandvariablecoef cients.Alsowemayaddthetermscorrespondingtokicktypecontributionsofrf-cavity:

Aτ=

L

L

τ

·δ(s s0)

(5)

orlocalizeds0)= cavityV(s)=V=+∞

0·δp(s s0)withδp(s

nn= ∞δ(s (s0+n·L))atpositions0.Fig.1andFig.2present nitekicktermmodelandthecorrespondingmultiresolutionrepresentationoneachlevelofresolution.

Multiresolution Representation for Orbital Dynamics in Multi.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)