We present the applications of variation -- wavelet analysis to polynomial/rational approximations for orbital motion in transverse plane for a single particle in a circular magnetic lattice in case when we take into account multipolar expansion up to an a
MULTIRESOLUTIONREPRESENTATIONFORORBITALDYNAMICSIN
MULTIPOLARFIELDS
000
A.Fedorova,M.Zeitlin,IPME,RAS,V.O.Bolshojpr.,61,199178,St.Petersburg,Russia 2 guAbstract
AWepresenttheapplicationsofvariation–waveletanalysis 3topolynomial/rationalapproximationsfororbitalmotionin1transverseplaneforasingleparticleinacircularmagnetic latticeincasewhenwetakeintoaccountmultipolarexpan-]sionuptoanarbitrary nitenumberandadditionalkickphterms.Wereduceinitialdynamicalproblemtothe nite-cnumber(equaltothenumberofn-poles)ofstandardalge-cbraicalproblems.Wehavethesolutionasamultiresolutiona(multiscales)expansioninthebaseofcompactlysupported.swaveletbasis.
cisy1INTRODUCTION
hpInthispaperweconsidertheapplicationsofanewnumeri-[cal-analyticaltechniquewhichisbasedonthemethodsof localnonlinearharmonicanalysisorwaveletanalysistothe1orbitalmotionintransverseplaneforasingleparticleinav5circularmagneticlatticeincasewhenwetakeintoaccount4multipolarexpansionuptoanarbitrary nitenumberand0additionalkickterms.Wereduceinitialdynamicalprob-8lemtothe nitenumber(equaltothenumberofn-poles)of0standardalgebraicalproblemsandrepresentalldynamical0variablesasexpansioninthebasesofmaximallylocalized/0inphasespacefunctions(waveletbases).Waveletanalysisscisarelativelynovelsetofmathematicalmethods,whichigivesusapossibilitytoworkwithwell-localizedbasesinsyfunctionalspacesandgivesforthegeneraltypeofopera-htors(differential,integral,pseudodifferential)insuchbasespthemaximumsparseforms.Ourapproachinthispaperis:vbasedonthegeneralizationofvariational-waveletapproachiX
from[1]-[8],whichallowsustoconsidernotonlypolyno-mialbutrationaltypeofnonlinearities[9].Thesolutionr
ahasthefollowingform
z(t)=zslow
N(t)+
zj(ωjt),ωj~2j(1)
j≥N
whichcorrespondstothefullmultiresolutionexpansionin
alltimescales.Formulagivesusexpansionintoaslow
partzslow
NandfastoscillatingpartsforarbitraryN.So,wemaymovefromcoarsescalesofresolutiontothe nestoneforobtainingmoredetailedinformationaboutourdynami-calprocess.The rsttermintheRHSofequation(1)corre-spondsonthegloballeveloffunctionspacedecompositiontoresolutionspaceandthesecondonetodetailspace.Inthiswaywegivecontributiontoourfullsolutionfromeachscaleofresolutionoreachtimescale.Thesameiscorrect
+
2
1
y2
2+k1(s)
(n+1)!
·(x+iy)(n+1)
Thenwemaytakeintoaccountarbitrarybut nitenumberoftermsinexpansionofRHSofHamiltonianandfromourpointofviewthecorrespondingHamiltonianequationsofmotionsarenotmorethannonlinearordinarydifferen-tialequationswithpolynomialnonlinearitiesandvariablecoef cients.Alsowemayaddthetermscorrespondingtokicktypecontributionsofrf-cavity:
Aτ=
L
L
τ
·δ(s s0)
(5)
orlocalizeds0)= cavityV(s)=V=+∞
0·δp(s s0)withδp(s
nn= ∞δ(s (s0+n·L))atpositions0.Fig.1andFig.2present nitekicktermmodelandthecorrespondingmultiresolutionrepresentationoneachlevelofresolution.