We present the applications of variation -- wavelet analysis to polynomial/rational approximations for orbital motion in transverse plane for a single particle in a circular magnetic lattice in case when we take into account multipolar expansion up to an a
Figure1:Finitekickmodel.
Figure2:Multiresolutionrepresentationofkick.
3RATIONALDYNAMICS
The rstmainpartofourconsiderationissomevariational
approachtothisproblem,whichreducesinitialproblemtotheproblemofsolutionoffunctionalequationsatthe rststageandsomealgebraicalproblemsatthesecondstage.Wehavethesolutioninacompactlysupportedwaveletba-sis.Multiresolutionexpansionisthesecondmainpartofourconstruction.Thesolutionisparameterizedbysolu-tionsoftworeducedalgebraicalproblems,oneisnonlin-earandthesecondaresomelinearproblems,whichareobtainedfromoneofthenextwaveletconstructions:themethodofConnectionCoef cients(CC),StationarySub-divisionSchemes(SSS).
3.1VariationalMethod
Ourproblemsmaybeformulatedasthesystemsofordi-narydifferentialequations
Qi(x)
dxi
dt
(Qiyi)+Piyi(7)
andasetoffunctionals
x)= 1
Fi(Φi(t)dt Qixiyi|10,
(8)
whereyi(t)(yi(0)=0)aredual(variational)variables.It
isobviousthattheinitialsystemandthesystem
Fi(x)=0
(9)
areequivalent.Ofcourse,weconsidersuchQi(x)whichdonotleadtothesingularproblemwithQi(x),whent=0ort=1,i.e.Qi(x(0)),Qi(x(1))=∞.
Nowweconsiderformalexpansionsforxi,yi:
xi(t)=xi(0)+ λki k(t)yj(t)=
ηr
j r(t),(10)
k
r
where k(t)areusefulbasisfunctionsofsomefunctionalspace(L2,Lp,Sobolev,etc)correspondingtoconcreteproblemandbecauseofinitialconditionsweneedonly k(0)=0,r=1,...,N,i=1,...,n,
λ={λi}={λri}=(λ1i,λ2i,...,λN
i),
(11)
wherethelowerindexicorrespondstoexpansionofdy-namicalvariablewithindexi,i.e.xiandtheupperindexrcorrespondstothenumbersoftermsintheexpansionofdynamicalvariablesintheformalseries.Thenweput(10)intothefunctionalequations(9)andasresultwehavethefollowingreducedalgebraicalsystemofequationsonthesetofunknowncoef cientsλkiofexpansions(10):
L(Qij,λ,αI)=M(Pij,λ,βJ),
(12)
whereoperatorsLandMarealgebraizationofRHSandLHSofinitialproblem(6),whereλ(11)areunknownsofreducedsystemofalgebraicalequations(RSAE)(12).
Qijarecoef cients(withpossibletimedependence)ofLHSofinitialsystemofdifferentialequations(6)andasconsequencearecoef cientsofRSAE.
Pijarecoef cients(withpossibletimedependence)ofRHSofinitialsystemofdifferentialequations(6)andasconsequencearecoef cientsofRSAE.
I=(i1,...,iq+2),J=(j1,...,jp+1)aremultiindexes,bywhicharelabelledαIandβI—othercoef cientsofRSAE(12):
βJ={βj1...jp+1}=
jk,(13)1≤jk≤p+1
wherepisthedegreeofpolinomialoperatorP(6)
αI={αi1...αiq+2}=
i1,...,i q+2
i1... ˙is... iq+2,(14)