=(y+z)2-(y-z)2
=(y+z+y-z)[y+z-(y-z)]
=2y·2z=4yz.
点拨:此题若用多项式乘多项式法则,会出现18项,书写会非常繁琐,认真观察此式子的特点,恰当选择公式,会使计算过程简化.
12.解法一:如图(1),剩余部分面积=m2-mn-mn+n2=m2-2mn+n2.
解法二:如图(2),剩余部分面积=(m-n)2.
∴(m-n)2=m2-2mn+n2,此即完全平方公式.
点拨:解法一:是用边长为m的正方形面积减去两条小路的面积,注意两条小路有一个重合的边长为n的正方形.
解法二:运用运动的方法把两条小路分别移到边缘,剩余面积即为边长为(m-n) 的正方形面积.做此类题要注意数形结合.
13.D 点拨:x2+4x+k2=(x+2)2=x2+4x+4,所以k2=4,k取±2.
1114.B 点拨:a2+2=(a+)2-2=32-2=7. aa
15.A 点拨:(2a-b-c)2+(c-a)2=(a+a-b-c)2+(c-a)2=[(a-b)+(a-c)] 2+(c-a)2=(2+1)2+(-1)2=9+1=10.
16.B 点拨:(5x-2y)与(2y-5x)互为相反数;│5x-2y│·│2y-5x│=(5x- 2y)2 =25x2-20xy+4y2.
17.2 点拨:(a+1)2=a2+2a+1,然后把a2+2a=1整体代入上式.
18.(1)a2+b2=(a+b)2-2ab.
∵a+b=3,ab=2,
∴a2+b2=32-2×2=5.
(2)∵a+b=10,
∴(a+b)2=102,
a2+2ab+b2=100,∴2ab=100-(a2+b2).
又∵a2+b2=4,
∴2ab=100-4,
ab=48.