手机版

原码补码的转换(2)

发布时间:2021-06-07   来源:未知    
字号:

原码补码的转换

而二的补码(two's complement) 指的就是通常所指的补码。

这里补充补码的代数加减运算:

1、补码加法

[X+Y]补 = [X]补 + [Y]补

【例7】X=+0110011,Y=-0101001,求[X+Y]补

[X]补=00110011 [Y]补=11010111

[X+Y]补 = [X]补 + [Y]补 = 00110011+11010111=00001010

注:因为计算机中运算器的位长是固定的,上述运算中产生的最高位进位将丢掉,所以结果不是

100001010,而是00001010。

2、补码减法

[X-Y]补 = [X]补 - [Y]补 = [X]补 + [-Y]补

其中[-Y]补称为负补,求负补的方法是:对补码的每一位(包括符号位)求反,最后末位加“1”。

这里补充补码的代数解释:

任何一个数都可以表示为-a=2^(n-1)-2^(n-1)-a;

这个假设a为正数,那么-a就是负数。而根据二进制转十进制数的方法,我们可以把a表示为:a=k0*2^0+k1*2^1+k2*2^2+ +k(n-2)*2^(n-2)

这里k0,k1,k2,k(n-2)是1或者0,而且这里设a的二进制位数为n位,即其模为2^(n-1),而2^(n-1)其二项展开是:1+2^0+2^1+2^2+ +2^(n-2),而式子:-a=2^(n-1)-2^(n-1)-a中,2^(n-1)-a代入a=k0*2^0+k1*2^1+k2*2^2+ +k(n-2)*2^(n-2)和2^(n-1)=1+2^0+2^1+2^2+ +2^(n-2)两式,2^(n-1)-a=(1-k(n-2))*2^(n-2)+(1-k(n-3))*2^(n-3)+ +(1-k2)*2^2+(1-k1)*2^1+(1-k0)*2^0+1,而这步转化正是取反再加1的规则的代数原理所在。因为这里k0,k1,k2,k3 不是0就是1,所以1-k0,1-k1,1-k2的运算就是二进制下的取反,而为什么要加1,追溯起来就是2^(n-1)的二项展开式最后还有一项1的缘故。而-a=2^(n-1)-2^(n-1)-a中,还有-2^(n-1)这项未解释,这项就是补码里首位的1,首位1在转化为十进制时要乘上2^(n-1),这正是n位二进制的模。 不能贴公式,所以看起来很麻烦,如果写成代数式子看起来是很方便的。

注:n位二进制,最高位为符号位,因此表示的数值范围-2^(n-1) ——2^(n-1) -1,所以模为2^(n-1)。上面提到的8位二进制模为2^8是因为最高位非符号位,表示的数值范围为0——2^8-1。

原码补码的转换(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)