直线与双曲线
一:直线与双曲线位置关系种类Y
O
X
种类:相离;相切;相交(两个交点,一个交点)
位置关系与交点个数Y
相交:两个交点O X
相切:一个交点 相离: 0个交点Y
相交:一个交点
O
X
总结
方程组解的个数交点个数 一个交点 0 个交点 相离 相 切 相 交
有没有问题 ? 两个交点 相交
>0 <0
两个交点 0 个交点 一个交点
相交 相离
=0
?
相切相交
天哪 !
[1] 0 个交点和两个交点的情况都正常, 那么 ,依然可以用判别式判断位置关系 [2]一个交点却包括了两种位置关系: 相切和相交 ( 特殊的相交 ) , 那么是否意 味着判别式等于零时 , 即可能相切也可能相 交 ?
实践是检验真理的唯一标准 !请判断下列直线与双曲线之间的位置关系[1]
x y l : x 3 ,c : 1 9 162 2
2
2
相 切
[2]
4 x y l : y x 1 , c : 1 3 9 16回顾一下:判别式情况如何?
相 交
一般情况的研究显然,这条直线与双曲线的渐进线是平行的, 也就是相交.把直线方程代入双曲线方程,看 看判别式如何?
b x y l : y x m ,c : 2 2 1 a a b根本就没有判别式 !
2
2
唉 ! 白担心一场 !当直线与双曲线的渐进线平行时 , 把直线方 程代入双曲线方程 , 得到的是一次方程 , 根 本得不到一元二次方程 , 当然也就没有所谓 的判别式了 。 结论:判别式依然可以判断直线与双曲线的 位置关系 !
>0 <0
两个交点 0 个交点 一个交点
相交 相离 相切
=0
好也 !
判断直线与双曲线位置关系的操作程序把直线方程代入双曲线方程
得到一元一次方程 直线与双曲线的 渐进线平行 相交(一个交点)
得到一元二次方程 计算判别式 >0 =0 <0
相交
相切
相离
判断下列直线与双曲线的位置关系4 x y [1] l : y x 1 , c : 1 5 25 16 5 x y [2] l : y x 1 , c : 1 4 25 162 2 2 2
相交(一个交点)
相离