解析:(1)方程x-5x+6=0的两根为2,3,由题意得a2=2,a4=3. 13
设数列{an}的公差为d,则a4-a2=2d,故d,从而a1.
221
所以{an}的通项公式为ann+1.
2
anann+2
(2)设{的前n项和为Sn,由(1)=,则
22234n+1n+2Sn=23+…+nn+1,
2222134n+1n+2Sn34+…+n+1n+2. 22222两式相减得
1n+213 1
Sn+ 3n+1-n+22 224 21n+231=1-n-1-n+244 2 2n+4
所以Sn=2-2
11.(2014·安徽卷)数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N. an
(1)证明:数列{是等差数列;
n
(2)设bn=3·an,求数列{bn}的前n项和Sn. an+1anan+1an
解析:(1)=+1,即-1.
n+1nn+1nana1
所以}是以=1为首项,1为公差的等差数列.
n1an2
(2)由(1)得=1+(n-1)·1=n,所以an=n.
n从而bn=n·3.
Sn=1·3+2·3+3·3+…+n·3,① 3Sn=1·3+2·3+…+(n-1)·3+n·3①-②得
-2Sn=3+3+…+3-n·33· 1-3 n+1=-n·3
1-3 1-2n ·3=
2
n+1n
1
2
n
n+1
2
3
n
n+1
1
2
3
n
nn
*
2
.②
-3.