镁合金,LPSO
Figure12|Thedetailedschematicdiagramsofcorrosionprocess,a1-a4graphscorrespondtotheMDZ-Calloy;b1-b4graphscorrespondtotheMDZ-545alloy.Itrevealsthatbothrapidformfilmabilityandremediationabilityaretwoimportantreasonsinenhancingthecorrosionproperties.
distributionoftensilestress.Inaddition,asdegradationprocessispreceded,bothsurfaceoxidationfilmsarebrokendown.However,incontrasttoas-castalloycontaining18R-LPSOphase,thealloywith14H-LPSOphaseexhibitsrapideroxidationfilmremediationability,whicheffectivelyinhibitsthecontactbetweensolutionandthematrix.
Methods
Samplepreparation.AnormalcompositionMg-2Dy-0.5Zn(at.%)alloyhasbeenpreparedbychillcastingtechnology.Thealloyhadbeenpreparedinatantalum-crucibleunderacovergasmixtureofCO2andSF6.Aftermixingat720uCfor1h,thealloywascasttothemouldpreheatedat600uC.Thefilledmouldwasheldat670uCfor1hundertheprotectivegas.Then,thewholetantalumcruciblewiththemeltingalloywasimmersedtotheflowingwaterat600ml/s.Whenthebottomoftantalumcrucibletouchedthewater,itstoppedfor2second.Assoonastheliquidleveloftheinsidemeltwasinalignmentwiththeheightofoutsidewater,thesolidificationprocesswasfinished.Thediameterandlengthoftheingotwere70mmand80mm,respectively.ThechemicalcompositionofMg-1.91Dy-0.32Zn(indexedasMDZ-C)wasmeasuredbyX-rayfluorescencespectroscopy.Theelementcompositionwaslowerthanthenominalcompositionowingtotheelementburningloss.Moreover,thetotalcontentofmainimpurities(Cu,FeandNi)islowerthan0.015wt.%.Microstructureandphaseidentification.Themicrostructuralinvestigationswereperformedusingscanningelectronmicroscopywithafieldemissiongun(SEM-FEG,JEOLJSM-7001F).Thestandardmetallographicprocedureswereapplied,includinggrinding,polishingandetching.Thesampleswereetchedinapicralsolutiontorevealgrainboundaries.Theelementalconcentrationinthematrixandphaseswere
investigatedbySEMequippedwithenergydispersiveX-rayanalysis(EDX)(INCAfromOxford).Theaveragevalueswereobtainedbasedonatleastfiverandomspots.Calorimetricresponseoftheas-castalloywasmeasuredusingdifferentialscanningcalorimetry(DSC,STA449C).Aheatingrateof6uC/minwasemployedunderargonpurgeat35ml/min.Thephaseshavebeenidentifiedbytransmissionelectronmicroscopy(TEM,JEM-2010).ThinfoilsamplesfortheTEMobservationwerepreparedusinganIonPolishingSystem(RES101).
Electrochemicaltest.Electrochemicalbehaviorsweretestedusingapotentiostat/frequencyresponseanalysissystem(Bio-logic,VSP).Experimentswerecarriedoutinathree-electrodeelectrochemicalcell,inwhichasaturatedcalomelelectrode(SCE)asthereferenceelectrode,aplatinummeshascounterelectrodeandthespecimenunderinvestigationastheworkingelectrode.Theexperimentswerecarriedoutin0.9wt.%NaClaqueoussolutions.InordertoreducethefluctuationofpH,theratioofsolutiontosurfaceis80mlto1mm2.Duringthewholetest,thetrayswereplacedinanincubator.Thetemperatureintheincubatorwasmaintainedat25uC.Opencircuitpotential(OCP)measurementsweremadebetweentheworkingelectrodeandthereferenceelectrodewithoutcurrentbeingpassedtothecounterelectrodes.This
measurementshowedthepotentialatwhichtheanodicandcathodicreactioncurrentsattheworkingelectrode/solutioninterfacewerebalanced.TheOCPtestswerebegunimmediatelyafterthespecimenwasimmersedinthesolutionandweremeasuredfor6hduration.
Thecyclicpolarizationswereperformedafterimmersingfor10min,2hand4h.Theforwardscannedpolarizationcurvesstartedfromacathodicpotentialof
21800mV,wherethesurfacesofthealloyswerenotyetcorroded,andextendedtothevertexpotentialof250mV.Theforwardscanwasfollowedbyareversescanbacktothefinalpotential21950mV.Thescanratewas2.5mV/s,thestepheightwas1mV.Thesurfacemorphologyaftercyclicpolarizationtestafterimmersingfor10minwasdriedandobservedbySEMimmediately.
Theelectrochemicalimpedancespectroscope(EIS)wascarriedoutatopen
potentialwithanappliedsignalof10mVrms.Thescanningfrequencyrangedfrom100kHzdownto0.1Hz.Thesampleswereimmersedin0.9wt.%NaClsolutionsfordifferenttimes,viz.2h,4h,6h,8hand12h,toinvestigatethecorrosionprocess.AfterEIStests,theMDZ-CandMDZ-545samplesweredriedandobservedbySEMimmediately.
Immersiontestandproductanalysis.Theimmersiontestsweretoinvestigatethecorrosionmechanismandtorevealthedevelopmentandgrowthofcorrosion
productsofMDZalloysinNaClaqueoussolutions.Tothispurpose,threecylinder(Ø1035)specimenscontaining18R-LPSOor14HLPSOphaseswereimmersioninNaClaqueoussolutionsatdifferenttimesviz.10min,20min,60minand120min.Theywerecleanedbyrinsingwithpurewater,andthenrinsedbyethanolanddriedinairpriortoSEM-FEGobservation.
Thephasecompositionofcorrosionproductsonthesamplesimmersedupto12hinthetestsolutionswereconfirmedbyx-rayelectrondiffractiondirectly(XRD,Rigaku).TheXRDanalysiswasperformedbyscanningfrom20uto80uwithastepsizeof0.02uwithCuKaradiation.Thefilamentcurrentandaccelerationvoltagewere30mAand40kV,respectively.
1.Staiger,M.P.,Pietak,A.M.,Huadmai,J.&Dias,G.Magnesiumanditsalloysasorthopedicbiomaterials:Areview.Biomaterials.27,1728–1734(2006).
2.Serre,C.M.,Papillard,M.,Chavassieux,P.&Boivin,G.Invitroinductionofacalcifyingmatrixbybiomaterialsconstitutedofcollagenand/orhydroxyapatite:anultrastructuralcomparisonofthreetypesofbiomaterials.Biomaterials.14,97–106(1993).
3.Janning,C.etal.Magnesiumhydroxidetemporarilyenhancingosteoblastactivityanddecreasingtheosteoclastnumberinperi-implantboneremodelling.ActaBiomater.6,1861–1868(2010).4.Zberg,B.,Uggowitzer,P.J.&Lo¨ffler,J.F.MgZnCaglasseswithoutclinicallyobservablehydrogenevolutionforbiodegradableimplants.NatureMater.8,887–891(2009).
5.Yamasaki,M.,Hayashi,N.,Izumi,S.&Kawamura,Y.CorrosionbehaviorofrapidlysolidifiedMg-Zn-REelementalloysinNaClsolution.Corr.Sci.49,255–262
(2007).