手机版

2013澳大利亚高考数学试题答案(15)

发布时间:2021-06-08   来源:未知    
字号:

Question 16 (15 marks) Use a SEPARATE writing booklet.

(a)

(i) Find the minimum value of P(x) =2x3 15x2 +24x +16, for x ≥0. (ii) Hence, or otherwise, show that for x ≥0,

( x +1 ) x 2 + ( x +4 )2

≥25x2 .(iii) Hence, or otherwise, show that for m ≥0 and n ≥0,

( m+n)2

+ ( m+n+ 4 )2

100mn

m+n+1 .

(b) A small bead P of mass m can freely move along a string. The ends of the string

S. The bead undergoes uniform circular motion with radius r and constant angular velocity ω in a horizontal plane.

The forces acting on the bead are the gravitational force and the tension forces along the string. The tension forces along PS and PS′ have the same magnitude T.

The length of the string is 2a and SS′=2ae, where 0 <e <1. The horizontal plane through P meets SS′at Q. The midpoint of SS′is O and β=∠S′PQ.Theparameter θ is chosen so that OQ =a cosθ.

Question 16 continues on page 17

2 1

2

2013澳大利亚高考数学试题答案(15).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)