第25卷第7期2008年7月
统计研究
StatisticalResearchVol.25,No17
Jul.2008
基于分层随机抽样的季节指数的
抽样估计研究
邓明
内容提要:由于传统的季节指数分析方法是一种描述统计,,给出了估计量的偏误和均方误差以及均方误差的估计,的确定。
关键词:分层随机抽样;季节指数;抽样调查;假设检验
中图分类号:O212 文献标识码:A()07-0070-04
TheEstimationofSeasonalIndex
onStratifiedRandomSampling
DengMing
Abstract:Asthetraditionalmethodofseasonalindexisjustadescriptivestatistic,thispaperputsforwardaseasonalindexestimatorbasedonstratifiedrandomsampling,andgivesthebiasandthemeansquareerrorsoftheestimator,alsogivestheestimationofthemeansquareerrors,analysesthehypothesistestoftheseasonalindexandtheoptimizationofthesamplequantity.
Keywords:Stratifiedrandomsampling;Seasonalindex;Samplesurvey;Hypothesistest
一、引言
季节变动是一种普遍的社会经济现象,例如交通运输、旅游业和工农业生产等都存在季节变动。传统的季节变动分析根据连续多年的普查数据计算季节指数,并利用季节指数之间的变动大小分析季节变动的程度(耿修林,2003;Anderson,1998)。这种传统的季节指数的分析方法在实际应用中存在两个方面的问题:一是传统的季节指数的计算方法对数据的要求较高,往往需要连续多年的数据,但许多情况下只能取得年数较少的样本数据,这使得传统的季节变动分析在社会经济统计分析中的应用受到极大限制,并且由于这种方法是基于多年的历史数据进行分析的,其时效性也较差;二是传统的季节指数的计算方法仅仅是一种描述统计或者说是一个点估计,没有对其估计精度、估计区间以及假设检验进行研究。
因此,为了能利用年数相对较少的样本数据分析季节变动,同时进行相应的推断统计分析,本文根
据抽样理论提出了基于分层随机抽样的季节指数的
抽样估计方法。
二、估计量的构造
由于计算季节指数时对某一时期按不同年份和季节分别取得数据,从而应把这个时期同一季节的全部标志值作为总体,并把其中每一年的全部标志值作为一个层,所以季节指数的抽样估计应采用分层随机抽样方法。
用Yijl(i=1,2,…,m;j=1,2,…,k;l=1,2,…,Nij)表示第i年第j季节中第l个单元的标志值,其中Nij表示第i年第j季节的单元数。而
m
m
ij
k
ij
Nj=
i=1
∑N
,Nj=
i=1
∑∑N
j=1
(1)
则分别表示j总体(季节)的单元数和全部k个总体(季节)的单元数。记: Yij=
Nij
N
ij
l=1
∑Y
ijl
,Sij
2
2
(Yijl- =Yij)
Nij-1l=1
N
ij
∑