手机版

Periodic bifurcation from families of periodic solutions for(9)

发布时间:2021-06-08   来源:未知    
字号:

Let A:D(A)\to E be an infinitesimal generator either of an analytic compact semigroup or of a contractive C_0-semigroup of linear operators acting in a Banach space E. In this paper we give both necessary and sufficient conditions for bifurcation of $T$-pe

forε∈(0,ε0],whereε0>0issu cientlysmall.Thusforanyε∈(0,ε0]thereexistshεsuchthatMε(hε)=0.Moreover,wehavethat

hε→h0asε→0

otherwiseMwouldhavezerosinBRk(h0,r)di erentfromh0,contradicting(2.20).Finally,(2.18)followsfrom(2.6).

In nitedimensionalspacesresultssimilartopreviousTheorems2.2and2.3havebeenrecentlyobtainedbyBuica,LlibreandMakarenkov[3],wheretheuniquenessofthebifurcatingperiodicsolutionsisalsoproved.

3ThePoincar´emap

Sincethede nitionofthePoincar´emapforsystem(1.1)onthetimeinterval[0,T]dependsontheassumptionsonthelinearunboundedoperatorA,weprecisein(C1)and(C2)belowthetwocasesthatweconsiderforAinthepaper.

(C1)TheoperatorAisageneratorofananalyticcompactsemigroupeAtinE.The

operatorsf,garesubordinatedtosomeA α,0<α<1(seee.g.[11]),theoperatorf(·,A α·)isdi erentiableinthesecondvariableandtheoperators′f(2)(·,A α·),g(·,A α·,·)arecontinuousinR×EandtheysatisfyaLipschitzconditioninthesecondvariableuniformlywithrespecttotheothers.

(C2)TheoperatorAisageneratorofaC0-semigroupeAt.ThesemigroupeAtis

contractive,namely At e ≤e γt,

χ(f(t, ))≤kχ( ),χ(g(t, ,ε))≤kχ( ),

whereχistheHausdor measureofnoncompactness1inthespaceE,k≥0andq=k/γ<1.Theoperatorfisdi erentiableinthesecondvariableand′theoperatorsf(2)andgarecontinuousinR×EandtheysatisfyaLipschitzconditioninthesecondvariableuniformlywithrespecttotheothers.whereγ>0.TheoperatorsfandgarecontinuousfromR×E→Eandverifytheinequality

Periodic bifurcation from families of periodic solutions for(9).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)