2x 13
x
2
x 1
23
(5)y'
'
1
12
'
2
1
12
cosx '
2
2
( 2cosxsinx)
(6)因为y e
ln(1 x)(1 x)(1 x) (1 x)
23n
e
ln(1 x) ln(1 x) ln(1 x) ln(1 x)
23n
n 1
1 2xnx
y' (1 x)(1 x) (1 x) 2n
1 x 1 x1 x
2
n
6、(1)y f
(u),u
dy
1
1
1
dydu1 dydydu1 1
f'(u)
x2= f'(u) x2 f x2 dxdudx2dxdudx22
2
2
2
(2)y' (f(arctanx 7sinx))' (g(secx tanx))'
f'(arctanx 7sinx)(arctanx 7sinx)' g'(secx tanx)(secx tanx)' 2x 22
f'(arctanx 7sinx) 14sinxcosx 2
1 x
2
2
2
2
2
2
g'(secx tanx)(2secxtanx secx)
222
7、不一定成立.
对于x x0处,f(x)是否可导须按定义来验证,如
x 0 x,
f(x)
sinx,x 0
显然f' (0) 1,f' (0) 1,从而f'(0)不存在. 8、证明:因为lim lim
f(x x) f(x) x
f(x)f( x) f(x) x
f(x)[f( x) 1]
x
x 0
x 0
lim
x 0