手机版

2The Navier-Stokes and Euler Equations(11)

发布时间:2021-06-08   来源:未知    
字号:

math

2TheNavier–StokesandEulerEquations–FluidandGasDynamics

31

Adh´emarJeanClaudeBarr´edeSaint–Venant12.Themainissueistoincor-poratethefreeboundaryrepresentingtheheight-over-bottomh=h(x,t)ofthewater(measuredverticallyfromthebottomoftheriver).LetZ=Z(x)betheheightofthebottomoftherivermeasuredverticallyfromacon-stant0-levelbelowthebottom(thusdescribingtheriverbottomtopogra-phy),whichinthemostsimplesettingisassumedtohaveasmallvariation.NotethatherethespacevariablexinR1orR2denotesthehorizontaldi-rection(s)undu=u(x,t)thehorizontalvelocitycomponent(s),theverticalvelocitycomponentisassumedtovanish.Thedependenceontheverticalco-ordinateentersonlythroughthefreeboundaryh.Then,undercertainassump-tions,mostnotablyincompressibility,vanishingviscosity,smallvariationoftheriverbottomtopographyandsmallwaterheighth,theSaint–Venantsystemreads:

h+div(hu)=0 g (hu)+div(hu u)+gradh2+ghgradZ=02

Heregdenotesthegravityconstant.Notethath+Zisthelocallevelofthewatersurface,measuredverticallyagainfromtheconstant0-levelbelowthebottomoftheriver.Foranalyticalandnumericalworkon(evenmoregeneral)Saint–Venantsystemswerefertothepaper[4].Spectacularsimulationsofthebreakingofadamandofriver oodingusingSaint–VenantsystemscanbefoundinBenoitPerthame’swebpage13.

Manygas owscannotgenericallybeconsideredtobeincompressible,par-ticularlyatsuf cientlylargevelocities.Thentheincompressibilityconstraintdivu=0onthevelocity eldhastobedroppedandthecompressibleEulerorNavier–Stokessystems,dependingonwhethertheviscosityissmallornot,havetobeusedtomodelthe ow.

Herewestatethesesystemsunderthesimplifyingassumptionofanisentropic ow,i.e.thepressurepisagivenfunctionofthe(nonconstant!)gasdensity:p=p(ρ),wherepis,say,anincreasingdifferentiablefunctionofρ.UnderthisconstitutiveassumptionthecompressibleNavier–Stokesequationsread:

ForacomprehensivereviewofmodernresultsonthecompressibleNavier–Stokesequationswerefertothetext[5].

ForthecompressibleEulerequations,obtainedbysettingλ=0andν=0,globallysmoothsolutionsdonotexistingeneral.Considertheone-dimensional12

13ρt+div(ρu)=0(ρu)t+div(ρu u)+gradp(ρ)=νΔu+(λ+ν)grad(divu)+ρf.Hereλisthesocalledshearviscosityandν+λisnon-negative.http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Saint–Venant.htmlhttp://www.dma.ens.fr/users/perthame/

2The Navier-Stokes and Euler Equations(11).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)