手机版

2The Navier-Stokes and Euler Equations(7)

发布时间:2021-06-08   来源:未知    
字号:

math

2TheNavier–StokesandEulerEquations–FluidandGasDynamics

27

whereDg

denotesthematerialderivativeofthescalarfunctiong:

Dg=gt+u.gradg.Dt

Thus,fortwo-dimensional ows,thevorticitygetsconvectedbythevelocity eld,isdiffusedwithdiffusioncoef cientνandexternallyproduced/destroyedbythecurloftheexternalforce.Forthreedimensional owsanadditionaltermappearsinthevorticityformulationoftheNavier–Stokesequations,whichcorrespondstovorticitydistortion.

TheNavier–StokesandEulerequationshadtremendousimpactonappliedmathematicsinthe20thcentury,e.g.theyhavegivenrisetoPrandtl’s9boundarylayertheorywhichisattheoriginofmodernsingularperturbationtheory.NeverthelesstheanalyticalunderstandingoftheNavier–Stokesequationsisstillsomewhatlimited:Inthreespacedimensions,withsmooth,decaying(inthefar eld)initialdatumandforce eld,aglobal-in-timeweaksolutionisknowntoexist(Leraysolution10),howeveritisnotknownwhetherthisweaksolutionisuniqueandtheexistence/uniquenessofglobal-in-timesmoothsolutionsisalsounknownforthree-dimensional owswitharbitrarilylargesmoothinitialdataandforcing elds,decayinginthefar eld.Infact,thisispreciselythecontentofaClayInstituteMillenniumProblem11withanawardofUSD1000000!!Averydeeptheorem(see[2])provesthatpossiblesingularitysetsofweaksolutionsofthethree-dimensionalNavier–Stokesequationsare‘small’(e.g.theycannotcontainaspace-timecurve)butithasnotbeenshownthattheyareempty…

Weremarkthatthetheoryoftwodimensionalincompressible owsismuchsimpler,infactsmoothglobal2 dsolutionsexistforarbitrarilylargesmoothdataintheviscidandinviscidcase(see[6]).

Whyisitsoimportanttoknowwhethertime-globalsmoothsolutionsoftheincompressibleNavier–Stokessystemexistforallsmoothdata?Ifsmoothnessbreaksdownin nitetimethen–closetobreak-downtime–thevelocity elduofthe uidbecomesunbounded.Obviously,weconceive owsofviscousreal uidsassmoothwithalocally nitevelocity eld,sobreakdownofsmoothnessin nitetimewouldbehighlycounterintuitive.Hereournaturalconceptionoftheworldsurroundingusisatstake!

ThetheoryofmathematicalhydrologyisadirectimportantconsequenceoftheNavier–Stokesor,resp.,Eulerequations.The owofriversingeneral–andinparticularinwaterfallslikethefamousonesoftheRioIguassuontheArgentinian-Brazilianborder,oftheOranjeriverintheSouthAfricanAugra-biesNationalParkandothersshownintheFigs.2.1–2.6,areoftenmodeledbythesocalledSaint–Venantsystem,namedaftertheFrenchcivilengineer9

10

11http://www. /msc/prandtl.htmhttp://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Leray.html/millennium/Navier–Stokes_Equations/

2The Navier-Stokes and Euler Equations(7).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)