手机版

Nonlinear Hydrodynamics of a Hard Sphere Fluid Near the Glas(18)

发布时间:2021-06-08   来源:未知    
字号:

We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th

correlationsasafunctionofrunningtimet0.AfterarelativelyshorttimetKoforder10thecurrentcorrelationsreachtheirequilibriumvalueasgivenbytheequipartitiontheorem.ItmightbetemptingtoassumethatthedensitycorrelationshavealsoequilibratedbythattimeandsuchanassumptionissometimesmadeinMDwork,butwe ndthatforoursystematleastthisassumptiondoesnothold.

Tostudythedensitycorrelations,westore,forrunningtimest0≥tK,wheret0isthetimemeasuredfromtheinitiationofthecomputation,atalargenumberofperiodictimebins,theproductsoftheformδn(x,t0)δn(x′,t0+t)forallxx′.WethenmonitorthesphericallyaveragedspatialFouriertransform,S(q,t,t0)ofthequantity:

S(x,x′,t,t0)=<δn(x,t0)δn(x′,t0+t)>(3.3)

wheretheaverageisunderstoodtobeoveranumbernboftimebinsseparatedbyaninterval t.ThetimerangecoveredbytheaveragingprocessistR=nb t.InorderforS(q,t,t0)tobeanadequateapproximationtothethermodynamicaverageS(q,t)itisrequiredthatitbenotonlyindependentoft0,butalsoindependentoftRwithinstatisticalerror.Dependenceonthet0indicatesthepresenceofatransient.DependenceontRindicatesthattheaveragingtimeistooshortforergodicitytohold.Averyimportantpointisthatwe ndthattheminimumvalueofthetransienttimefordensity uctuationsisnottK,butitisoftheorderoftheslowestcharacteristicdecaytimet inthesystem.AsdiscussedinthenextSection,t isastronglyincreasingfunctionofdensity,andismuchlongerthantheequilibrationtimeforthekineticenergy.Similarly,itisnecessaryfortheaveragetoincludearangetRoforderofseveraltimest .We ndthatS(q,t,t0)athigherdensitieshasconsiderableoscillationsoverttimerangessmallerthant .Asoneincreases

Nonlinear Hydrodynamics of a Hard Sphere Fluid Near the Glas(18).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)