This paper describes a PC-based vision system that can be used to detect moving objects from a mobile robot. An image processing board equipped with an MPEG motion estimation processor calculates a sparse but robust optic flow in real-time. An algorithm to
pleobjectsorbigdisplacements(astypicallyinducedbycamerarotation)a xedblock-rasterisnotadequate.Toachievethehighestpossible exibility,thecoordinatesofRBsandSWscanberandomlysetbythesoftwarerunningonthePCforeachsinglematchingoperation.Alistof
positions
isreadviaDMA,thelistofresultsiswrittenbackbyDMAagain.ThissavesmostoftheCPU’sprocessingpowerfortheapplicationsoftwarethatevaluatesthegenerated ow eldsasdescribedinthenextsection.Foramoredetaileddescriptionofthehardwaresee[7].
3Detectionofmovingobjectsbyoptic owsegmentation
Manypapersintheliteratureofoptic owaddresstheproblemofobjectsegmentationandmotionparameterre-construction.Algorithmstocalculateall veparameters(theabsolutevalueofthetranslationvectorgetslostdur-ingthe3Dto2Dprojection)wereproposedforexamplebyPrazdny[6]orWengetal.[8].Adivpresentsanelegantap-proachtosolvethesegmentationproblemforall veparam-eters:Objectsareconsideredtoconsistofplanarsurfaces,sovectorscanbeclusteredinan8D(5Dforthemotionand3Dforthesurfaceparameters)Houghspace[1].
Applyingthesetechniquestooptic owscalculatedbyoursensorsystemproducesnosatisfyingresults,though.ResponsibleforthefailureoftheseverygeneralapproachesisthenumericalinstabilityoftheclosedformsolutiontoEqn.1alongwiththestrongquantizationerrorsofthecal-culatedvectors.
Thereasonforthisfailurecanalsobegraphicallyde-ducedbythesimilarityof eldsgeneratedbymerelateralandmererotationalmotion.Thoughallvectorsarepar-allelinthetranslationalcase,andalignedwithhyperbolas(accordingtoEqn.1)intherotationalcase,thedifferencehasthesameorderofmagnitudeasthequantizationeffects.Fig.4demonstratestheproblemforrealisticcameraparam-etersandconstant
depth.
Figure4.Optic ow:a)horizontaltranslation
b)verticalrotation.
Therefore,ageneralsolutiontothecompletemotionre-covery(i.e.segmentationofmovingobjectsanddetermina-tionofall5parametersforeachobject)seemsimpossible
inourcontext.
Morepragmaticapproachesthatcluster owvectorsalongtheir2DpropertiesasforexampleproposedbyYa-mamotoetal.[9],producedbetterresults,butaredif culttoadaptforamovingobserverandcannotbeusedforob-jectsmovingalongtheopticalaxis.
3.1Determinationofego-motion
Becauseoftheaboveproblems,weintroducesomesim-pli cationstothegeneralapproachesthatareinspiredbytherequirementsofourapplication.Becausethecameraismountedonamobilerobotwithnon-holonomickinemat-ics,onlyonetranslationalandonerotationalparameterre-main.Withoutfurtherrestrictinggenerality,buttosimplifytheequations,itisassumedthatthecameraismountedhori-zontally.Incameracoordinates,thereis
andthegeneralequationoftheoptic ow(Eqn.1)canbereducedtothefollowing:
and)remain,
Eqn.4canbesolvedforeachvectorasfollows:
(5)
isameasurementofthedistanceof
thecorresponding3Dpointandthushasanindividualvalueforeachvector(itisthereciprocalvalueoftheTimeToCollision,TTC).
Thesecondresult
shouldcorrespondtotherotationalvelocityofthecameraandthereforebeidenticalforeachvector.Thus,therotationofthecameracanbeestimatedbyasimplemeanvaluecalculation:
(7)
ExperimentsonMARVINinarealof ce-typeenviron-menthavedemonstratedthefeasibilityoftheproposedes-timationapproachfor.Whenemployingthemedianin-steadofthesimplemeanvalue,therobustnessofthecal-culatedvalueagainstremainingfaultyvectorscanbein-creasedfurther.Fig.5showsacomparisonoftheestimatedandtheonecalculatedbytheodometryoftherobot.Sincetheresultingvectorlengthsigni cantlyexceedsthemaximalvectorlengthoftheMEP,evenformoderateturningratesoftherobot(