手机版

管理运筹学习题(6)

时间:2025-04-28   来源:未知    
字号:

管理运筹学习题

A.c=6 a=-1 b=10 B.c=6 a=-1 b=12 C.c=4 a=3 b=12 D.c=4 a=3 b=12 E.c=6 a=3 b=12 3.设X(1),X(2)是用单纯形法求得的某一线性规划问题的最优解,则说明ACDE。

A.此问题有无穷多最优解 B.该问题是退化问题 C.此问题的全部最优解可表示为λX(1)+(1一λ)X(2),其中0≤λ≤1 D.X(1),X(2)是两个基可行解E.X(1),X(2)的基变量个数相同

4.某线性规划问题,含有n个变量,m个约束方程,(m<n),系数矩阵的秩为m,则 。A.该问题的典式不超过CNM个B.基可行解中的基变量的个数为m个C.该问题一定存在可行解D.该问题的基至多有CNM=1个E.该问题有111个基可行解

5.单纯形法中,在进行换基运算时,应A.先选取进基变量,再选取出基变量B.先选出基变量,再选进基变量C.进基变量的系数列向量应化为单位向量 D.旋转变换时采用的矩阵的初等行变换E.出基变量的选取是根据最小比值法则

6.从一张单纯形表中可以看出的内容有。A.一个基可行解B.当前解是否为最优解C.线性规划问题是否出现退化D.线性规划问题的最优解E.线性规划问题是否无界 7.单纯形表迭代停止的条件为( AB )

A 所有δj均小于等于0 B 所有δj均小于等于0且有aik≤0 C 所有aik>0 D 所有bi≤0 8.下列解中可能成为最优解的有( ABCDE )

A 基可行解 B 迭代一次的改进解 C迭代两次的改进解 D迭代三次的改进解 E 所有检验数均小于等于0且解中无人工变量

9、若某线性规划问题有无穷多最优解,应满足的条件有( BCE )

A Pk<Pk0 B非基变量检验数为零 C基变量中没有人工变量 Dδj<O E所有δj≤0 10.下列解中可能成为最优解的有( ABCDE )

A基可行解 B迭代一次的改进解 C迭代两次的改进解 D迭代三次的改进解E所有检验数均小于等于0且解中无人工变量 四、名词、简答

1、人造初始可行基:当我们无法从一个标准的线性规划问题中找到一个m阶单位矩阵时,通常在约束方程中引入人工变量,而在系数矩阵中凑成一个m阶单位矩阵,进而形成的一个初始可行基称为人造初始可行基。

2、单纯形法解题的基本思路? 可行域的一个基本可行解开始,转移到另一个基本可行解,并且使目标函数值逐步得到改善,直到最后球场最优解或判定原问题无解。

五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当于图解法可行域中的哪一个

顶点。

管理运筹学习题

六、用单纯形法求解下列线性规划问题:

七、用大M法求解下列线性规划问题。并指出问题的解属于哪一类。

管理运筹学习题

八、下表为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“≤”,X3,X4为松驰变量.表中解代入目标函数后得Z=10

(1)求表中a~g的值 (2)表中给出的解是否为最优解?

(1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2) 表中给出的解为最优解

第四章 线性规划的对偶理论

一、填空题

1.线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求最小值/极小值的线性规划问题

与之对应,反之亦然。

2.在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的目标函数系数。 3.如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为等式_。 4.对偶问题的对偶问题是原问题_。

5.若原问题可行,但目标函数无界,则对偶问题不可行。

6.若某种资源的影子价格等于k。在其他条件不变的情况下(假设原问题的最佳基不变),当该种资源增加3个单位时。相应的目标函数值将增加。

7.线性规划问题的最优基为B,基变量的目标系数为CB,则其对偶问题的最优解Y﹡-1

﹡﹡﹡﹡

8.若X和Y分别是线性规划的原问题和对偶问题的最优解,则有CXYb。 9.若X、Y分别是线性规划的原问题和对偶问题的可行解,则有CX≤Yb。

﹡﹡﹡

10.若X和Y分别是线性规划的原问题和对偶问题的最优解,则有CXb。

11.设线性规划的原问题为maxZ=CX,Ax≤b,X≥0,则其对偶问题为_。 12.影子价格实际上是与原问题各约束条件相联系的对偶变量的数量表现。

13.线性规划的原问题的约束条件系数矩阵为A,则其对偶问题的约束条件系数矩阵为T 14.在对偶单纯形法迭代中,若某bi<0,且所有的aij≥0(j=1,2, n),则原问题_无解。 二、单选题

1.线性规划原问题的目标函数为求极小值型,若其某个变量小于等于0,则其对偶问题约束条件为形式。

A.“≥” B.“≤” C,“>” D.“=” 2.设X、Y分别是标准形式的原问题与对偶问题的可行解,则 C 。

管理运筹学习题

3.对偶单纯形法的迭代是从_ A_开始的。

A.正则解 B.最优解 C.可行解 D.基本解

4.如果z。是某标准型线性规划问题的最优目标函数值,则其对偶问题 …… 此处隐藏:1698字,全部文档内容请下载后查看。喜欢就下载吧 ……

管理运筹学习题(6).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)