随机信号分析(第3版) 习题答案
E[Y(t)]=E[Asin(ω0t+θ)]
2π
=
∫
02π
Asin(ω0t+θ)
1
θ=02π
RY(t+τ,t)=E[Y(t+τ)Y(t)]
=
∫
Asin[ω0(t+τ)+θ]Asin(ω0t+θ)
1θ2π
A2=cosω0τ=RY(t)2
所以Y(t)]也是平稳的.设
M(t)=X(t)Y(t)由于X(t),Y(t)独立,不难得:
E[M(t)]=E[X(t)Y(t)]=E[X(t)]E[Y(t)]=0,
RM(t+τ,t)=E[X(t+τ)Y(t+τ)X(t)Y(t)]
=E[X(t+τ)X(t)]E[Y(t+τ)Y(t)]=RX(τ)RY(τ)12 β=A2σXecos2ω0τ2
所以经过低通滤波器LPF后,由于
RM(τ)=
122 βAσXecos2ω0τ212 β1+cos2ω0τ=A2σXe22112 β2 βτ=A2σXe+A2σXecos2ω0τ44
其中高频成分:
122 βAσXecos2ω0τ被滤掉,所以4
12 βRZ(τ)=A2σXe
4
所以Z(t)的平均功率
PZ=RZ(0)=
122AσX4