4、(8分)设1e ,0(),0sin ,0e 1
x x a x f x b x x
x -
⎧⎪+>⎪
==⎨⎪⎪<-⎩, 试问
(1),a b 为何值时,()f x 在(,)-∞+∞内连续?(2)()f x 在0x =处是否可导? 解 只须考虑()f x 在0x =处的连续性和可导性. (1)为使()f x 在0x =处连续,则有 0
lim ()lim ()(0)x x f x f x f +-
→→==, 即 1a b ==. (2)10
1e 1
(0)lim 0x
x f x
+
-
+→+-'==, 2000sin 1sin e 1sin e 1e 1(0)lim lim lim (e 1)x x x x x x x x
x x f x x x ---
-→→→--+-+-'===- 00cos e sin e 1
lim lim 222
x x x x x x x --
→→---===-. 故()f x 在0x =处不可导.
5、(8分)讨论函数2()e x
f x x -=的单调性,并求出该函数在实数范围内的极值和最值.
解 2()(2)e
(2)e x
x f x x x x x --'=-=-,令()0f x '=,得0x =或2x =.
函数2
2()e x f x x -=在(,0)-∞及(2,)+∞上单调减少,在(0,2)上单调增加. 于是,函数2
2()e x f x x -=在0x =处取得极小值,极小值为(0)0f =,在2x =处取得极大值,极大值为2
(2)4e f -=.
由于lim ()x f x →-∞
=+∞,而lim ()0x f x →+∞
=,因此,函数()f x 没有最大值,在0x =处取得最小值0.
6、(8分)设函数()f x 在0x =处连续,且0()
lim
2
e 1x x
f x →=-,求:(1)(0)f ';(2)20(tan sin )lim ln(1)
x f x x x x →-+.