果分别用 X 和 Y 表示两个量,前者可以表示成 Y=aX(a>0); 后者可以表示成 Y=a/X ,或 XY=a(a>0) 。
正比例和反比例的关系本质上是函数关系,小学阶段并不出现函数的概念,但要让学生感知两个量之间的关系。一是使学生对数量关系的认识和理解更加丰富,二是为第三学段进一步学习正比例函数和反比例函数,以及学习一般的函数知识做准备。教学中应与实际情境紧密联系,用学生可以理解的具体的方式呈现这些内容,引导学生从数量关系的角度,以及两个量之间变化的规律的角度来理解并掌握这个内容。
3.图像在正、反比例教学中的价值
学生对“正反比例”的学习,就是从简单的数量关系过渡到对“变化关系”的认识和学习。与以往的教材和教学要求相比,在方格纸上画图是个新的要求,教材中也出现了“正比例”及“反比例”的图像,它的价值是什么?教师该如何发挥好“图像”的作用,更好地体现和渗透函数思想呢?
下面结合具体的案例来回答这个问题。北京实验一小 郭雯砚 老师执教的《成正比例的量》,这节课上 郭 老师紧紧抓住了“图像”作为帮助学生认识和理解正比例的重要素材。
郭老师在学生根据表格、算式等熟悉的方式表示出正比例关系之后,教师地引出了“图像”,把它作为新朋友非常隆重介绍给了学生。让学生通过初步的猜想和分析,对图像有初步的感知,为后面深入而细致的探究奠定了基础。
的确,正比例教学是从常量数学到变量数学学习的启蒙阶段;图像教学能够直观地呈现两个变量之间的相依关系,使学生加深对正比例意义的理解。通过此课的教学,可以渗透函数思想,促进中小衔接,能够为学生今后的学习奠定基础。
因为学生有折线统计图的学习基础,描点连线对学生而言并不困难,可以自然地迁移。因此,在课堂上让学生认识正比例图像是有认知基础的。但同时也会存在困难,例如,该不该从 0 开始画呢?这个学生在学习正比例图像是普遍存在的问题,这个问题对于学生理解正比例有怎样的意义呢?让我们带着这个问题看看当时课堂上的情况吧。
可以看出,课堂上 虽然学生能画出图像,但他们大都是依据画折线统计图时的经验,这其实是错误的。在教学中, 郭 老师及时抓住了学生生成的问题,逐步进行深入的剖析,使学生明确这条直线是由无数个处在同一条直线上的点形成的。
从刚才的教学片段来看, 学生在探究的过程中,虽然会描点连线,甚至能找到变化规律,但是并没能够顺利地有在图像、表格和规律之间建立有机的联系。对于数学的认识还是比较孤立,比较静止的,缺乏运动的观点和变量的意识。这正是函数的核心所在,是引导学生深入理解正比例关系的要害所在,也正是发挥 “图像”作用的重要契机。课堂上,郭老师准确