手机版

高中数学教学案例 童想丁

发布时间:2024-11-25   来源:未知    
字号:

高中数学教学案例

高中数学教学案例:指数函数的图像与性质

童想丁(高一数学备课组)

提出问题:

新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境

中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。

教材中的地位:

本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是

高中研究的第一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。

设计背景:

在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,

知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。

高中数学教学案例

教学目标:

一、知识:

理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。

二、过程与方法:

由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条

件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性

质解决实际问题。

三、能力:

1.通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进

一步体会数形结合的思想方法。

2.通过对指数函数的研究,使学生能把握函数研究的基本方法。

教学过程:

由实际问题引入:

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个, 1个这样的

细胞分裂x次后,得到的细胞的个数y与x之间的关系是什么?

分裂次数与细胞个数

1,2;2,2×2=22;3,2×2×2=23; ;x,2×2×……×2=2x

归纳:y=2x

问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原

来的84%,那么经过x年后剩留量y与x的关系是什么?

经过1年,剩留量y=1×84%=0.841;经过2年,剩留量y=0.84×0.84=0.842 经过x年,剩留量y=0.84x

寻找异同:

你能从以上的两个例子中得到的关系式里找到什么异同点吗?

共同点:变量x与y构成函数关系式,是指数的形式,自变量在指数位置,底数

是常数;不同点:底数的取值不同。

那么,今天我们来学习新的一个基本函数:指数函数

得到指数函数的定义:定义:形如y=ax(a>0且a≠1)的函数叫做指数函数。

高中数学教学案例

在以前我们学过的函数中,一次函数用形如y=kx+b(k≠0)的形式表示,反比

例函数用形如y=k/x(k≠0)表示,二次函数y=ax2+bx+c(a≠0)表示。对于其一

般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢? 若a=0,当x>0时,恒等于0,没有研究价值;当x≤0时,无意义。

若a<0,当x=, 时是无意义的,没有研究价值。

若a=1,则=1,是一个常量,也没有研究的必要。

所以有规定且a>0且a≠1。

由定义,我们可以对指数函数有一初步熟悉。

进一步理解函数的定义:

指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无

理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法

则都适用,所以指数函数的定义域为R.

研究函数的途径:由函数的图像的性质,从形与数两方面研究。

学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数

的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经

验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势, )图像的

分布情况与函数的定义域,值域有关,函数的变化趋势体现函数的单调性。引导

学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。

首先我们做出指数函数的图像,我们研究一般性的事物,常用的方法是:由特殊

到一般。

我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,

将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。 最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且,画出取不同

的值时,函数的图像。

要求学生描述出指数函数图像的特征,并试着描述出性质。

教学反思

数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富

的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应

该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、

高中数学教学案例

比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精

加工。该案例正是从数学研究和数学实验的过程中进行设计。虽然学生的思维不

一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、

比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而才使

学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。

虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新

的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设

问题情景作为教学设计的重要的内容之一。教师应该把教学设计成学生动手操

作、观察猜想、揭示规律等一系列过程,侧重于学生的探索、分析与思考,侧重

于过程的探究及在此过程中所形成的一般数学能力。

教师的地位应由主导者转变为引导者,使教学活动真正成为学生的活动。在

教学过程中,把学习的主动权交给学生,在时间和空间上保证学生在教师的指导

下,学生能自己独立自主的探究学习。使教学活动始终处于学生的“最近发展区”,

使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。 总之,通过案例研究,不断研究新教材、新理念,不断调整教学策略优化课

堂教学,培养学生探究学习与创新学习能力将是我们在数学教学中要继续探究的

课题。

高中数学教学案例 童想丁.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
    ×
    二维码
    × 游客快捷下载通道(下载后可以自由复制和排版)
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
    × 常见问题(客服时间:周一到周五 9:30-18:00)