手机版

时间序列时序关联规则挖掘研究(9)

发布时间:2021-06-06   来源:未知    
字号:

里!垦!!!竺!121里!里2型尘1211兰!12里竺!!!坚坚竖!!里竺!兰塑!!

seriesdatapre-processing,tothelaststep,theinterpretationandevaluationoftemporalassociationrules.Ineverystep,theauthorcombstheexistingresearch,teststherelativetheoreticalmodels,offersimprovementandprovesit.Becausetheminingofmultivariatetimeseriesisahotissue,theauthordiscussesitinthelast

canpart.Theinnovationsofthedissertationbeincludedasfollows.

(1)Intimeseriesdatapre—processing,theauthorputsforwardsrecognition

onmethodofoutliernoisedatabaseddatavarianceratio.Timeseriesusually

containsnoisedata,whichwillaffecttheminingtemporalassociationrules,SOitshouldbecleanedoutbeforemining.Becausetimeseriescompressionisintoleranttooutliernoisedata,meanwhiletheexistenceofoutlierwillaffectthedivisionoftimeseriesandrepresentationoftimeseriespatterns,SOidentifyinganddeletingtheoutlierintimeserieswillbeoneoftheimportantworksintimeseriesdata

onpre processing.Whether

surroundingdata.The

estimatetheadatumistheoutlier,dependsUSeSitsvibrancywithauthordatavarianceratiooftimeseriesdatatovibrancy,andthenoffersrecognitionofoutliernoisedata.

(2)In

distance

bringstimeseriesandsimilaritymeasure,theauthorcomesupwithEuclidmethodtomeasurethesimilarityoftwodynamictimewarpingmeta—patternsand,andalsoforwarddistancemeanstomeasurethesimilarityoftWOtimeseriespatterns.Inminingtemporalassociationrules,themeta patternmonotonydistancemethod

notsuitableandthemeta-patternvectordistancemethodbothareforgettingfrequentpatternwhenmeasuringthesimilaritybetweentwometapatterns.Aimingthespecialtyoftimeseriespattern,thedissertationoffersweighted

timewarpingdistancemethodofmeta—pattern,andthencomesupwithdynamicmeans,whichCalldistancemeasurethesimilaritybetweentwosequentialpatterns.

(3)In

forwardsthetheacquirementoftemporalassociationrules,theauthorputslayeredmeans.The

rulestimerestrictionoftemporalassociationrulestheand...ofassociationdeterminesdifficulty

andofcanacquiringtemporalassociationrules.Inordertodecreasethedifficulty,wetemporalassociationrulesintodifferentlengthdividethebeforerofSOthenmine,thatiscalledthe

layeredminingoftemporalassociationrules.Becauseofthedifferenceindefiningthefrequentpatterns,themethodisdifferentfromotherminingways.Meanwhilebecausethemethodconsidersthebeforerofdifferentlength,ithastheunique4

时间序列时序关联规则挖掘研究(9).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)