手机版

专题:构造全等三角形方法总结

发布时间:2021-06-06   来源:未知    
字号:

专题:构造全等三角形

倍长中线法:即把中线延长一倍,来构造全等三角形。

1、如图1,在△ABC中,AD是中线,BE交AD于点F,且AE=EF. 试说明线段AC与BF相等的理由.

简析 由于AD是中线,于是可延长AD到G,使DG=AD,连结BG,则

在△ACD和△GBD中,AD=GD,∠ADC=∠GDB,CD=BD,所以△ACD≌△GBD(SAS),

B 所以

AC

GB

,∠

CAD=∠G,而AE=EF,所以∠CAD=∠AFE, 又∠AFE =∠BFG,所以∠BFG=∠G,所以BF=BG,所以AC=BF.

说明 要说明线段或角相等,通常的思路是说明它们所在的两个

三角形全等,而遇到中线时又通常通过延长中线来构造全等三角形.

D

E 图1

法一:如图,在△ABC中,AD平分∠BAC。在AB上截取AE=AC,连结DE。 ( 可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。)

法二:如图,在△ABC中,AD平分∠BAC。延长AC到F,使AF=AB,连结DF。 (

法三:在△ABC中,AD平分∠BAC。作DM⊥AB于M,DN⊥AC于N。

专题:构造全等三角形方法总结.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)