精选牛吃草问题(含例题、答案、讲解)绝对透彻、脉路清晰,让您一看就懂。
小学数学牛吃草问题知识点总结:
牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。
小升初冲刺第2讲
牛吃草问题
基本公式:
1) 设定一头牛一天吃草量为“1”
2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);
3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`
4)吃的天数=原有草量÷(牛头数-草的生长速度);
5)牛头数=原有草量÷吃的天数+草的生长速度。
例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15
头牛吃10天。问:这片牧草可供25头牛吃多少天?
解:假设1头牛1天吃的草的数量是1份 草每天的生长量:(200-150)÷(20-10)=5份
10×20=200份 原草量+20天的生长量 原草量:200-20×5=100 或150-10×5=100份
15×10=150份 原草量+10天的生长量 100÷(25-5)=5天
[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?
解:假设1头牛1天吃的草的数量是1份 草每天的生长量:(180-150)÷(20-10)=3份
9×20=180份 原草量+20天的生长量 原草量:180-20×3=120份 或150-10×3=120份
15×10=150份 原草量+10天的生长量 120÷(18-3)=8天
例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。